Domain-Specific OWL Ontology Visualization with
OWLGTrEd

Karlis Cerans Renars Liepiris, Arturs Sprogi, Julija Ovcinnikova,
Guntis Barzdin’s

Institute of Mathematics and Computer Science, ehsity of Latvia
{Karlis.Cerans, Renars.Liepins, Arturs.SprogisjjduDvcinnikova,
Guntis.Barzdins}@Ilumii.lv

Abstract. The OWLGrEd ontology editor allows graphical viszation and

authoring of OWL 2.0 ontologies using a compactiggtitive presentation that
combines UML class diagram notation with textual ndlaester syntax for
expressions. We present an extension mechanisrO\WEGrEd that allows

adding custom information areas, rules and visdfdces to the ontology
presentation thus enabling domain specific OWL logty visualizations. The
usage of OWLGTrEd and its extensions is demonstmteshtology engineering
examples involving custom annotation visualizatj@advanced UML class dia-
gram constructs and integrity constraints in seiatatabase schema design.

Keywords. OWL, UML/OWL profile, OWLGrEd, domain-specific oritmgy
visualization, semantic databases, integrity caists

1 Introduction

Intuitive ontology visualization is a key for thé@arning, exchange, as well as their
use in conceptual modeling and semantic databdmsrsc design. A number of tools
and approaches exist for rendering and/or editidg_(J1,2] ontologies in a graphical
form, including UML Profile for OWL DL [3], ODM [4] TopBraid Composer [5],
Protégé [6] plug-in OWLViz [7], OWLGrEd [8,9]. Thapproaches of [3,4,8,9] use
UML [10,11] class diagrams to visualize OWL ontdkxy A core principle here is to
visualize an independent hierarchy of ontologys#asand then structure the data and
object property visualizations along the properyndin and range classes. Depicting
OWL classes as UML classes, OWL object propertieassociation roles and OWL
data properties as attributes allows for easy dgecaplisualization also of subclass
assertions, simple cardinality constraints and riseef relations. Further OWL
ontology constructions (e.g. class expressiongeities with more than one domain
assertion, sub-property relations etc.) are thewllea by some auxiliary means in the
notation and the editor. The design choice for OWE®G is to use textual OWL
Manchester syntax [12] for class expressions witkee graphical notation is not

" Partially supported by European Union via EuropBagional Development Fund project
2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112.
™ Partially supported by Latvian 2010.-2013. NatidRasearch Program Nr.2 project Nr.5.

available or is not desired thus allowing compant aomprehensible presentation of
up to medium-sized ontologiewithin a single diagram.

Although UML-style class diagram notation for ba€dVL constructs can be
successfully used in ontology rendering and autigprihere are further features that
would be welcome in a graphical ontology editonc®i annotations in OWL 2.0 [2]
may carry substantial model information that jusésinot fit into the “logical” part of
the ontology, it would be important to offer medos domain-specific visualization
of annotation assertions via specific textual pnest#gon or graphical effects, e.g. as
outlined in [13]. As a special case, a UML-style daling in OWL would benefit
from graphical composition or property derived umimtation (modeled semantically
as annotation assertions to the respective preggrti

With the advent of semantic OWL-based databasesh sis StarDog [14], an
important issue is rising about incorporating imtigg constraints [15,16], also
expressed in OWL syntax, in graphical databasensaltesign. As an example of our
technology application we provide a domain-speaifitology visualization profile
for axiom-level annotations that separate “prop@m®. open-world) OWL axioms
from integrity constraints, depicted within the sagraphical ontology diagram.

The demonstration shows (i) working with OWLGrEdIltdo render and author
OWL ontologies (i) OWLGrEd extension mechanism fweating domain-specific
ontology visualization tools and (iii) created domapecific tools, including
OWLGTrEd/S for integrity constraint specificatiorn,veork.

2 OWLGrEd Notation and Editor

OWLGTrEd provides a complete graphical notation for OWL22, based on UML
class diagrams. We visualize OWL classes as UMksels, data properties as class
attributes, object properties as associations, viddals as objects, cardinality
restrictions on association domain class as UMldioatities, etc. We enrich the
UML class diagrams with the new extension notatieng. (cf. [8,9]):

« fields in classes forequivalent class superclassand disjoint class
expressions written in Manchester OWL syntax [12];

« fields in associations and attributes feguivalent disjoint and super
properties and fields for property characteristécg,,functional transitive etc.;

e anonymous classes containieguivalent class expressidmt no name (we
show graphically only those anonymous classesrnbedl to have graphic represen-
tation in order to be able to describe other omplooncepts in the diagram);

e connectors (as lines) for visualizing binaligjoint, equivalent etc. axioms;

« boxes with connectors for n-agysjoint, equivalent etc. axioms;

» connectors (lines) for visualizing object propergstrictionssome only,
exactly as well as cardinality restrictions.

OWLGTrEd provides option to specify class expressioncompact textual form
rather than using separate graphical element feh dagical item within class
expression. If an expression is referenced in jpleltplaces, it can optionally be

1 Please see http://owlgred.lumii.lv/examples fansmntology presentations
2 http://owlgred.lumii.lv/

shown as an anonymous class. An anonymous clatsoisised as a base for property
domain/range specification, if this domain/rangaasa named class.

Figure 1 illustrates some basic OWLGrEd construstssimple mini-University
ontology, including different notation options feguivalentClasseassertion, object
property restriction and a comment. The notaticexiglained in more detail in [8].

Thing{ow! TT (disjoint)
name:string{func} -
"All personfﬁr:igirn]g teachers w | T
[N] St belongsTo
. <<Comment>> e e programName:string{<name}
‘A” persons, f - -| key = personID
|nc(|jud|né:) teachers personName:string{<name} enrolled|{>takes o include
and students” s tri bel T
personID:string[1] elongsTo} relate Course
Professor courseName:string
_ <disjoint>> } _ _ {<name}
Student jsTakenBy takes {<relates} 1.1
B Teacher jsTaughtBy teaches {<relates} {<>takes}
AcademicStaff PermanentTeaching Staff |__MandatoryCourse
=Teacher ¢ <teaches some MandatoryCourse teaches some [L.

Fig. 1. Example: OWLGTrEd notation for a mini-Universitytotogy

The OWGTrEd editor offers ontology interoperabil{ignport/export) functionality
with Protégé 4.1. ontology editor [6]. The prindi@VLGrEd usage tool chains are:
- ontology authoring (create and edit an ontolog@WLGrEd, then export it to
Protégé to analyze and possibly submit it to otlology processing tools)
- ontology visualization (an ontology that is imparteom Protégé is displayed
graphically to obtain a comprehensible visual viawit).
Any combination of these two OWLGrEd usage patteiinsluding ontology
round-trip engineering between OWLGrEd and Protigépossible, as well.

3 Creating Domain-Specific Ontology Visualizations

Domain-specific ontology visualizations in OWLGr&dtology editor are defined by
means of ontology visualization profiles. Each ¢ogy visualization profile consists
of a set of visual item (= abstract field) speafions, where each field comprises:
0] field type (e.g. textual/boolean(= check box)/conboa field)
(i) field appearance (e.g. visibility and text fontlejy
(iii) visual effects on ontology diagram symbols and iofieéds (e.g. symbol
color and shape)
(iv) field semantics (what OWL axioms or axiom annotatia value in the
field corresponds to).
For an ontology to be visualized in OWLGrEd in amon-specific way, the
corresponding ontology visualization profile has ke created or imported using
OWLGTrEd visualization profile plug-in. When the otdgy created in such domain-
specific extension of OWLGTrEd is exported to Prétémgtology editor, the ontology
diagram node and edge fields that correspond tfilpraisual items generate the
OWL axioms or axiom annotations, as specified étdfsemantics description.

Consider an ontologg fragment visualized in a domain-specific way, ra§ig.2.
The graphical notation has a new class field “DBhdered textually with prefix
“{DB:” and suffix }", a class field “isimportant” whose value “trues iendered as
orange background and 3D shape of the class syrabdlassociation role sub-field
“isComposition” whose value “true” is rendered d@andond symbol on opposite
association end. We desire to have these fieldegpond to the following axioms:

AnnotationAssertion(A:DBExpr A:AcademicProgram "¥éam")

AnnotationAssertion(A:DBExpr A:Course "XCourse")

AnnotationAssertion(A:isimportant A:Teacher "true")

AnnotationAssertion(A:isComposition A:includes &fu

AcademicProgram Course Teacher
programName:string elongsTo includes | courseName:string teaches isTaughtBy
{DB: XProgram} {DB: XCourse}

Fig. 2. Simple domain-specific ontology annotation viszation

This is achieved by semantics declaratidhsnotationAssertion(:DBExpr $subject
$value)for the field “DB”, AnnotationAssertion(:isimportant $subject "truddy the
value “true” in the boolean-typed field “isimportdn and AnnotationAsser-
tion(:isComposition $subject "truetdr the value “true” in “isComposition”.

When an ontology that uses tleisimportant A:DBExpr and A:isComposition
annotations (or other OWL built-in or user defirathotations whose visual image is
foreseen in a loaded ontology visualization profieimported into OWLGrEd, the
editor is able to create the domain-specific vigagion (like Fig.2) automatically.

- { N
Thing{owl} disioint AcademicProgram L
name:(c) string{(c) func} Person {(c) disjoint} programName:string{<name} ‘belongsTo
"All persons, including teachers

enrolled|{>(c) takes o

and students” belongs To}

personName:string{<name}
personlID:string[(c)1] *1

includes,

relates | ___Course |
courseName:string

L {<name}
<<©d'510'”f>> __ Student jsTakenBy takes {<relates} (c)1..(c)1Q
c

Teacher jsTaughtBy teaches {<relates} {<>(c) takes
c
Permanent Teaching Staff \ c teaches some [(c)1.* Mandatory Course

<(c) teaches some MandatoryCourse |

Fig. 3. Integrity constraint specification for mini-Unigty ontology

4 | ntegrity Constraintsin Semantic Database Schema Design

Using the ontology of Figure 1 as a schema for sgimaatabase would be proble-
matic due to the standard OWL axiom interpretatiorfopen-world” sense The

3 This interpretation would allow to infer e.g. thatperson is a student, if he/she has been
entered into the database as taking (instead ofiiteg) a course, or that a student is enrolled
in two academic programs just because of takingsesuthat belong to both of them.

solution we are offering is to mark explicitly th@ioms whose interpretation in the
open-world sense is undesirable, as integrity caimgs'.

The OWLGTrEd editor is extended by “integrity coastt” visualization profilé
that foresees a possibility to attach a (c)-mack {tr constraint) to visual places that
can be identified as “holding” the concrete axioasjn Fig. 3 for mini-University.

In the example, for instance, the axi@bjectPropertyDomain(A:takes A:Student)
is annotated to becom@bjectPropertyDomain(Annotation(C:isConstraint “8y)
A:takes A:Studentfor a suitable namespace holding theisConstraintannotation
property. The visuat-notation placed at the beginningtakesrole link is obtained
from a “DomainMode” field under the associationerdbkes The corresponding
semantics specification for the “DomainMode” fieldausing the considered
ObjectPropertyDomakaxiom annotation isinnotation(C:isConstraint “true”)

The considered examples outline the potential ofmalo-specific ontology
visualization using OWLGrEd and invite the readighex to apply the demonstrated
ontology visualization profiles, or design his/leevn ontology visualization tools.

References

. Smith, M. K.; Welty, C.; and McGuiness, D.: OWleb Ontology Language Guide, 2004
. Motik, B; Patel-Schneider P.F; Parsia B.: OWLW&b Ontology Language Structural
Specification and Functional-Style Syntax, 2009
. Brockmans, S., Volz, R., Eberhart, A., LofflEr, Visual Modeling of OWL DL Ontologies
Using UML, Proc. of ISWC 2004, LNCS 3298, pp. 19822004.
. ODM UML profile for OWL, http://www.omg.org/sp&0DM/1.0/PDF/
. TopBraid Composer, http://www.topquadrant.comdoicts/TB_Composer.html.
. Protégé 4, http://protege.stanford.edu/
. OWL Viz, http://www.co-ode.org/downloads/owlviz/
. Barzdins, J.; Barzdins, G.; Cerans, K.; LiepRs, Sprogis, A.: OWLGrEd: a UML Style
Graphical Notation and Editor for OWL 2. In Pro€E @NLED 2010, 2010.
9. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis,UML Style Graphical Notation and Editor
for OWL 2. In Proc. of BIR'2010, LNBIP, Springer 20, vol. 64, p. 102-113, 2010.
10.Unified Modeling Language: Infrastructure, vens2.1. OMG Specification ptc/06-04-03,
http://www.omg.org/docs/ptc/06-04-03.pdf
11. Unified Modeling Language: Superstructure, iegr2.1. OMG Specification ptc/06-04-02,
http://www.omg.org/docs/ptc/06-04-02.pdf
12.0WL 2 Manchester Syntax, http://www.w3.org/TRI&manchester-syntax/
13. Barzdins, J.; Cerans, K.; Liepins, R.; Sprodis, Advanced ontology visualization with
OWLGTEd. In Proc. of OWLED 2011, 2011.
14. Stardog, http://stardog.com/
15. Tao, J.; Sirin, E.; Bao J; McGuinness, D.: dnity Constraints in OWL. In Proc. of AAAI
2010, 2010.
16. Sirin, E; Smith, M; Vallace, E: Opening, Clggilorlds — On Integrity Constraints. In
Proc. of OWLED 2008, 2008.

N -

w

o~NO O~

4 We refer to [15, 16] for integrity constraint dission in the context of StarDog databases,
noting that our integrity constraint encoding isiBeinterconvertible with that of StarDog's.
5 The extended editor is available as OWLGrEd/S fhitp://owlgred.lumii.lv/s

