
OWLGrEd Ontology Visualizer

Renārs Liepiņš, Mikus Grasmanis, and Uldis Bojārs

Institute of Mathematics and Computer Science, University of Latvia,
Raina bulvaris 29, Riga, LV-1459, Latvia

{renars.liepins,mikus.grasmanis}@lumii.lv,uldis.bojars@gmail.com

Abstract. The OWLGrEd Ontology Visualizer is an online tool for vi-
sualizing OWL ontologies using a compact UML-based notation. This pa-
per describes the implementation of the OWLGrEd Ontology Visualizer
which consists of a web-based user interface, the graph (visualization)
generation component, the layout component and the graph rendering
and sharing component. The paper concludes with a list of future devel-
opment ideas including switching from HTML canvas to vector graphics
and extending the visualization with an ontology verbalization layer.

Keywords: Ontologies, Semantic Web, Visualization, OWL

1 Introduction

Visualizations are an important tool for working with ontologies. They can
provide a “bird’s eye view” of the ontology, enrich the documentation and
help debug ontologies by letting developers spot mismatches between what they
intended and what is defined in the actual ontology.

OWL ontologies can be represented in RDF and visualized as RDF graphs
(e.g., using the W3C RDF validator). However, such visualizations are low-level
and work at the conceptual level of triples instead of ontology building blocks
such as classes and properties. For ontology graphical representation to be useful
it needs to be at the level of ontology language concepts and, in order to provide
a good overview, it needs to be as clear and as compact as possible.

This paper describes the OWLGrEd Ontology Visualizer1 – an online tool
for visualizing OWL 2 ontologies. It is based on a desktop application – the
OWLGrEd graphical OWL editor [1]. Both applications employ the same com-
pact UML-based notation for representing OWL ontologies described in the next
section.

2 Background

The OWLGrEd notation2 is based on UML class diagrams that software devel-
opers may already be familiar with. Most OWL features have a 1:1 mapping

1 http://owlgred.lumii.lv/online_visualization
2 http://owlgred.lumii.lv/notation

ISWC 2014 Developers Workshop Copyright held by the authors 37



2 Renārs Liepiņš, Mikus Grasmanis, and Uldis Bojārs

to UML concepts (OWL classes to UML classes, datatype properties to class
attributes, ...). New graphical and text elements are introduced for OWL features
that do not have UML equivalents. Classes and other elements have text fields
where OWL expressions may be added if needed (e.g. to indicate an equivalent
class). The notation is further described in [1].

Fig. 1. Options for representing class hierarchy relationships in OWLGrEd.

The notation supports OWLGrEd’s aim to make visualizations as compact
as possible. For example, Figure 1 shows alternative ways for representing gen-
eralization (a subclass-of relation). The naive representation – a line for every
generalization relation (shown on the left) – can be expressed more compactly
with the fork notation where multiple incoming lines are merged into one (shown
in the middle). A text notation is also available for cases where it is more
appropriate (e.g. to refer to a superclass that is defined using an OWL class
expression and is not referenced anywhere else).

These and other notation features allow us to create cleaner visualizations
but make the application more complex because it has to consider the alter-
native ways for representing OWL axioms. This impacts the graph generation
component described in Section 3.2.

OWLGrEd diagrams use the orthogonal layout where the inheritance-defining
relations (i.e. subclass-of relations between classes and instance-of relations
between classes and instances) are presented in a hierarchical layout (i.e. they
“flow” from one side of the diagram to the opposite side) and all other relations
“flow” in the direction perpendicular to it. We have observed that for a typical
OWL diagram the horizontal direction (left-to-right) seems to be the more
readable and the one which leads to more compact diagrams. The generation
of diagram layout is described in Section 3.3.

Figure 2 shows a visualization of the Koala ontology from the Protégé ontol-
ogy library3. Visualizations are assigned custom URLs that allow to share them
with others4.
3 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
4 Koala ontology: http://owlgred.lumii.lv/online_visualization/koala.owl

ISWC 2014 Developers Workshop Copyright held by the authors 38



OWLGrEd Ontology Visualizer 3

Fig. 2. Visualization of the Koala ontology.

3 System Architecture

This section describes the implementation of the OWLGrEd Ontology Visualizer.
It is a client-server type application where the client-side accepts user requests
and contains the visualization component while most of the work is done server-
side. The server side is implemented as a data transformation pipeline and con-
sists of a file upload service, pipeline manager, and individual pipeline modules
described in detail later in the paper. This modular architecture provides sepa-
ration of concerns, permitting easier application updates and enabling scalable
solutions that can run transformations in parallel.

The server side of the application runs inside JVM and is written in Java and
Clojure. Communication between the client and the server uses asynchronous
HTTP requests with JSON payload.

3.1 Ontology Upload and Parsing

Users can either (a) upload and visualize their ontology; or (b) explore example
visualizations. In order to start the process a user uploads the ontology file to
be visualized. The application saves the file and passes it to subsequent steps -
ontology parsing and graph generation (“graphization”).

The application parses the ontology using OWL API5 [2]. By using an es-
tablished API for parsing OWL we can avoid having to deal with multiple ways
for representing OWL ontologies. As a result users can upload ontologies in
any format as long as it is recognized by the OWL API. The “graphization”
component that is next in the pipeline makes OWL API calls in order to retrieve
all the information necessary for visualization.

5 https://github.com/owlcs/OWLAPI

ISWC 2014 Developers Workshop Copyright held by the authors 39



4 Renārs Liepiņš, Mikus Grasmanis, and Uldis Bojārs

3.2 Graph Generation (“Graphization”)

Graph generation is a core step of the ontology visualization process. It trans-
forms the parsed set of ontology axioms into a graphical form that is laid out
and sent to the browser. The OWLGrEd notation attempts to summarize the
ontology by showing it in the most compact form depending on the context.
Thus there can be more than one way to display the same information (see Sec-
tion 2) associated with a set of rules that define how to choose the visualization
approach in each particular case. For each type of axioms and entities there is a
visualization function that transforms them to a graph representation.

The whole transformation is implemented as a pipeline that starts with two
sets: (a) items to transform; and (b) item renderings generated. Initially the
first set (items to transform) contains all entities and axioms from the ontology;
the second set (item renderings) is empty. The result set is a collection of ob-
jects: Nodes and Edges. They both have a type (OWLClassBox, SublassOfLine,
etc.) and a list of text labels. Text labels have a text value and type (e.g.
ClassNameLabel, PropertyNameLabel).

The pipeline proceeds through an ordered list of transformation steps each
consisting of a selector function and a transformation function. The selector
function selects items from the “items to transform” set that are suitable for the
given step. The selected items are then passed to the transformation function
that renders them. The result is added to the rendered items set and the pro-
cessed items are removed from the “items to process” set. The remaining items
are passed to the next select / transform step. The resulting JSON structure is
passed to the layout step described in the next section.

The transformation component is written in Clojure and consists of ∼70
transformation rules (corresponding to the total number of [node, edge, la-
bel] types in the notation) and ∼1500 lines of code. We chose a functional
programming language because it fits well with the transformation pipeline
approach where each transformation can be defined as a function. Other benefits
of choosing Closure are the interactive interpreter that makes testing easier and
natively access to Java objects which enables interoperation with the OWL API.

The last step performed by the “graphization” component is styling which
walks through the set of graph elements (nodes, edges, labels) and applies styling
information according to their type and properties. The styling configuration
that determines the appearance of visualization elements (colors, label positions,
etc.) is stored in a separate file for easy customisation.

3.3 Layout Generation

The layout generation module, written in Java, walks the graph (provided as a
JSON structure) generated by the “graphization” component, enriches it with
layout information (element coordinates and dimensions) and sends the result to
the rendering component. Having a custom layout generation engine allows us
to fully support the chosen notation and to fine-tune the visualization as needed.
OWLGrEd uses the orthogonal diagram layout described in Section 2.

Initially, the dimensions of all text items (textual inside nodes and edge
labels) are calculated taking into account the text and its style. For each node

ISWC 2014 Developers Workshop Copyright held by the authors 40



OWLGrEd Ontology Visualizer 5

minimum possible dimensions are calculated that will enclose all text items
related to the node. As the next step, we enrich the original graph with ge-
ometric constraints (minimum sizes, spacings, edge orientation, label anchors)
and calculate a graph layout satisfying these constraints. The resulting layout
information is injected into the JSON file describing the graph.

The completed JSON file describing the graph and its layout is sent to a
browser-side rendering component which draws the diagram. As a convenience
feature the JSON file is also saved under a short name in order to enable diagram
sharing.

3.4 Rendering, Presentation & Sharing

The Rendering component displays the resulting visualization in the browser
where users can navigate it (zoom, pan, select) and share it with others via
custom URIs generated for each new visualization.

The graph is shown in an HTML5 canvas element using a custom render-
ing library built on top of the KineticJS library6. This component draws the
visualization according to the diagram structure, element coordinates and styles
contained in the supplied JSON structure.

The user interface also contains some visualization examples that can be
accessed via their URIs or by pressing the “Enjoy our examples” button which
will cycle through the examples.

4 Experience Using the Application

The usage of the application can be characterized by the number of ontologies
submitted to it. We analyzed the weekly statistics of the upload button hits
from international locations (according to Google Analytics). In the time period
from 2014-04-01 till 2014-07-18 there were 512 upload button hits from locations
outside Latvia. There were 368 successful file uploads most of which were OWL
ontologies that were visualized by the application.

The size of ontology files uploaded varied from 412 bytes (for a small ontology
in Turtle RDF) to ∼1.7 Mb (for larger ontologies expressed in RDF/XML) with
average size ∼103 Kb and a median of ∼24 Kb.

Ontologies were expressed in multiple formats including various RDF rep-
resentations and the OWL XML syntax. Thanks to OWL API the application
can work with all these formats without requiring us to write additional code.
Sometimes “real-life” ontologies uploaded for visualization may be contain “sur-
prises” that prevent us from parsing them. For example, we identified a bug in
OWL API which prevents an ontology containing the BOM (byte-order mark
that may be present at the start of text files) from being parsed. The bug was
reported to OWL API developers who promptly resolved it resulting in OWL
API improvement that anyone can benefit from7.
6 http://kineticjs.com/
7 https://github.com/owlcs/OWLAPI/issues/187

ISWC 2014 Developers Workshop Copyright held by the authors 41



6 Renārs Liepiņš, Mikus Grasmanis, and Uldis Bojārs

5 Future Work

This section lists future development ideas for the OWLGrEd Ontology Visu-
alizer. The implementation details, a current state of which is recorded in this
paper, may change as a result of these developments.

Moving from canvas to vector graphics - we plan to change the ontology
presentation component by switching ontology display from HTML5 canvas to
SVG. This may also allow users to save resulting visualizations and work on
them further using graphic editing software.

Visualization publication and sharing - the sharing feature (where vi-
sualizations get their own URIs) was added recently and we intend to further
develop it. It would be useful to publish visualizations along with metadata (e.g.,
schema.org) asserting that this is a visualization of an ontology and providing
information about it.

Ontology editing - currently the application provides a read-only view of
the ontology. Our medium-term plan is to extend the application with the editing
functionality, converting it into an online version of the OWLGrEd editor. This
will involve substantial changes to the application described in this paper.

Ontology verbalization - a visualization of an ontology is a good way for
getting an overview of the ontology but, if viewers do not know semantics of the
notation, they cannot just come to the picture and instantly “understand” it. We
plan to mitigate this by integrating controlled natural language verbalizations
into the visualization so that user can click on any element and see a natural
language representation of this element.

6 Conclusion

This paper described the implementation of the OWLGrEd Ontology Visualizer
– an online application for creating and sharing visualizations of OWL ontolo-
gies. The main activities performed by the application are ontology parsing,
generation of the visualization graph, layout calculations and displaying the
visualization to the user. The visualizer benefits from using OWL API that
takes care of parsing various OWL ontology formats.

We believe ontology visualizations are a valuable resource with many uses
such as ontology exploration and debugging and are looking forward to further
developments in this area.

References

1. Bārzdiņš, J., Bārzdiņš, G., Čerāns, K., Liepiņš, R., Sproǧis, A. (2010). UML Style
Graphical Notation and Editor for OWL 2. Perspectives in Business Informatics
Research, Lecture Notes in Business Information Processing, Volume 64, Part 2,
pages 102-114, 2010

2. Horridge, M., Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies.
Semantic Web, 2(1), 2011, 11-21

Acknowledgments. This work was partially supported by ESF project
2013/0005/1DP/1.1.1.2.0/13/APIA/VIAA/049.

ISWC 2014 Developers Workshop Copyright held by the authors 42




