Advanced OWL 2.0 Ontology Visualization
in OWLGrEd

Karlis CERANS', Jilija OVCINNIKOVA ", Rerirs LIEPNS' and Artirs SPR@;1S'
Institute of Mathematics and Computer Science, &mity of Latvia
Raiga buharis 29, Riga LV-1459, Latvia
{Karlis.Cerans, Julija.Ovcinnikova, Renars.Liepidgturs.Sprogis}@lumii.lv

Abstract. Intuitive ontology visualization is a key for thdééarning, exchange, as
well as their usage in conceptual modeling and séimdatabase schema design.
OWLGTEd is a visual tool for compact graphical UMtyle rendering and editing
of OWL 2.0 ontologies. We describe here the extslityi features for OWLGrEd
that allow tailoring the editor for specific ontgipbased modeling needs,
including custom entity annotation visualizationsd adescription of integrity
constraints for semantic database schemas. Wesdislea application of concrete
OWLGTrEd extensions in the context of ontology-cesdeinformation system
engineering.

Keywords. OWL, UML/OWL profile, OWLGrEd, graphical ontologyisuali-
zation, semantic databases, integrity constrasetsiantic information systems

Introduction

The semantic technologies, based on RDF [1], RD}¥&rd OWL [3,4] data formats,
among the others, offer new perspectives for datgarozation, management and
integration on the basis data conceptual strudiae is either explicitly formulated
(e.g. in the case of new data designs), or iso/betrecovered via the data semantic re-
engineering process. The concept of Semantic Wehr{8, for instance, the publicly
available Linked Open Data [6] collection demoristrahe use of semantic
technologies on the web scale; these technologiesofanot less potential also for
enterprise scale where large volumes of heterogesnaond interconnected information
has been collected and is intensively used.

The use of RDF/OWL as the backbone of data integraand management
infrastructure becomes possible due to a combimatiofactors such as high-level
conceptual modeling constructs, formal semantick effective reasoning support (cf.
e.g. Pellet [7], Fact++ [8] and Hermit [9] reasm)eras well as efficient data stores
supporting RDF and OWL data management (see ergudgo [10], AllegroGraph
[11] and OWLIM [12]). There is a new developmentSiardog OWL/RDF database
environment [13] that includes use of integrity saints together with traditionally
“open-world” OWL specifications, making it partieuly well suited for use in
semantic information systems.

A key component in ontology-based information iefracture is a intuitive
ontology presentation and editing notation thaivedl presenting the existing and well-

: Partially supported by European Union via EuropRagional Development Fund project
2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112.
T Partially supported by Latvian 2010.-2013. NatioRakearch Program Nr.2 project Nr.5.

thought OWL/RDF modeling constructs to the end ugernumber of tools and
approaches exist for rendering and/or editing OWitolmgies in a graphical form,
including UML Profile for OWL DL [14], ODM [15], TeBraid Composer [16],
Protégé [17] plug-in OWLViz [18], OWLGrEd [19,20Most of these approaches (cf.
at least [14,15,19,20]) use some variant or extensf UML class diagrams [21,22] to
visualize OWL ontologies. Although there is no doesne correspondence between all
OWL ontology and UML class diagram concepts, therapts to adapt UML notation
also to OWL ontology management is quite understbleddue to the well-thought
basis and widespread distribution of UML notatiohhe benefits of graphical UML-
style presentation of ontologies have been obseal®a in the conceptual study of
“Semantic Latvia” information infrastructure [23ha its applications to the semantic
data re-engineering task in the medical domair2[2y4,

Although the UML-style class diagram notation faske OWL constructs can be
successfully used in OWL ontology rendering andhaung, the use of OWL
ontologies in semantic database and informatiotesystructure definition introduce
the need for further customized or “domain-spetifiotations for OWL ontology
presentations. Since one of the primary designsgo&lOWL has been to obtain a
decidable logical language, there are rather luntessibilities to introduce extensions
into the “logical” part of OWL. There is, howeves, rather important construct of
annotations in OWL 2.0 [4] that may carry substntiodel contents as well as model
management information that just does not fit itie “logical’ part of the OWL
ontology. Our proposal in this paper is to comenih a structural means for defining
custom / domain specific ontology annotation agserisualizations based on specific
textual presentations and graphical effects (edagrdm symbol appearance change).
We base our presentation on the example of OWLG@ridlogy editor, for which we
have developed the ontology annotation visual gaméition means; however, there
should be no principle obstacles to alternativelémgntations of the notations we are
proposing. Some of the principles underlying thrkvhave been already sketched as
[26], however, here we are able to present a methildd design of our ideas, as well
as report on an implemented system and give canaszige examples.

We illustrate our approach by examples of (i) defjn‘annotation semantics” for
advanced UML constructs, such as composition opgnty derived union (note that
these constructs do not have direct counterpart©WL), (ii) defining database
connectivity annotation fields for OWL classes, esftjand data properties, based on
RDB20OWL mapping language for relational databasBBd-/OWL format mappings,
and (iii) devising notation for entity and axiomvé annotations, allowing to
incorporate integrity constraints [27,28] that @emantically important in semantic
database schema design and that make the extentlé&kEd editor well suited for
schema management in StarDog database environf&int [

1. OWLGrEd Notation and Editor

OWLGTrEd® provides a complete graphical notation for OWL4, based on UML
class diagrams. It follows the basic principle iMUstyle visualization of OWL to
visualize an independent hierarchy of ontology s#asand then structure the data and
object property visualizations along the propexiyndin and range classes.

® http:/fowlgred.lumii. v/

OWLGTrEd visualizes OWL classes as UML classes, OWbiect properties as
association roles and OWL data properties as ata#h as well as OWL individuals as
objectd. This design decision allows also for easy graglhidsualization also of
subclass assertions in form of UML generalizatiove (make use also of UML
generalization sets to encode the disjointness ampteteness assertions on the
subclasses), simple cardinality constraints anersa-of relations. There is however
the need to offer suitable graphical representatialso for further OWL ontology
constructions (e.g. class expressions, propertigs more than one domain assertion,
sub-property relations etc.). The design choic©WLGrEd ontology editor is to use
textual OWL Manchester syntax [29] for class expi@ss where the graphical notation
is not available or is not desired.

More precisely, we enrich the UML class diagramghwihe new extension
notations (cf. [19,20]):

« fields in classes foequivalent classsuperclassinddisjoint classexpressions
written in Manchester OWL syntax;

« fields in associations and attributes fequivalent disjoint and super
properties and fields for property characteristicg, functional transitive etc.;

e anonymous classes containiaguivalent class expressidiut no name (we
show graphically only those anonymous classesribatl to have graphic represen-
tation in order to be able to describe other omfploconcepts in the diagram);

 connectors (as lines) for visualizing binaligjoint, equivalent etc. axioms;

» boxes with connectors for n-adysjoint, equivalent etc. axioms;

» connectors (lines) for visualizing object propermgstrictions some only,
exactly as well as cardinality restrictions.

OWLGTEd provides option to specify class expressioncompact textual form
rather than using separate graphical element fah dagical item within class
expression. If an expression is referenced in plelfplaces, it can optionally be shown
as an anonymous class. An anonymous class is &ked as a base for property
domain/range specification, if this domain/rangeas a named class.

Figure 1 contains a variant of mini-University dotyy, shown in OWLGrEd
notation: there are disjoiRerson AcademicProgramand Courseclasses with their
respective subclasses, where Treacherclass is specified to be the disjoint union of
Professor AssociateProfessotand Assistant classes. The object properties (e.g.
enrolled belongsToincludes relates andteachesare ascribed as roles on associations
containing their respective domain and range ctas$@e sub-property relation is
depicted using “<” notation, e.g. tf&ubProperty(takes relategikiom is depicted by
{<relates} compartment associated with tta&esproperty description.

For the notation illustration purpose we have ideld two depiction forms for
axioms EquivalentClasses(AcademicStaff Teacherjhe graphicak<equivalent>>
symbol and the=Teachertext in a compartment foAcademicStaffclass, — and
SubClassOf(PermanentTeachingStaff ObjectSomeVahlueg¢teaches
MandatoryCourse)}- the textual form ifPermanentTeachingStaffass, as well as the
red restriction line toward#andatoryCourseclass symbol. We illustrate also the
standard notation for annotations (the commenthénexample) that is available in
OWLGTEd.

4 We note that an implementation is underway alsodioralternative OWL individual
visualization in the list form (this may be essah#i.g. for enumerated classes)

name:string{func}

__Thingfowl} _| _J (disjoint}

Person -

<<Comment>> N "All persons, including teachers Academ{cProqram

Alversons—— and students” programName:string{<name} elongsTo 1
ersons,
inclEding teachers key = personiD enrolled|{>takes o
L - = —
and students” personName:string{<name} belongsTo} __<<Comment>> 1
personiD:string[0..1] _ -/ forrelates

_ <<disjoint>>_ __________ i ______ T < "An abstract property"

! |

! Teacher w include:

! Tarvint Student

' salaryinteger — relate: Course

1 isioi F T jsTakenB; takes {<relates} 1..1q|courseName:

L o o [Ty L e e e

! <
: H passed {<takes}
1

Professor |

<salarysome : teaches {<relates} {<>ta|<e5§

integer [>10000] .
<<equiva|en[>;|‘ """ Academic Staff
=Teacher

AssociateProfessor r
MandatoryCourse
- PermanentTeachingStaff | teaches some [1.#]| <isTaughtbyonly (Professor or
Assistant <teaches some (PermanentTeachingStaff and
MandatoryCourse salary some integer [> 8000]))

Fig. 1. Example: OWLGTrEd notation for a mini-Universitytology

We note that the data propertyame that has sub-propertiepersonName
programNameand courseNameat Person AcademicProgramand Course classes
respectively. A typical UML-style design might haweed here the same attribntame
at all these classes, however, in the case of Ogwastics that would correspond to
the domain ofnamebeing intersection of the classes (not as intend€de single
placement ohameproperty atowl:Thing class provides also a place in the editor for
recording its characteristics (e.g. a functionaparty), annotations and relations to
other entities in the ontology.

The OWGTrEd editor offers read/write functionalitr OWL Functional syntax [4],
as well as ontology interoperability (import/exgoftinctionality with Protégé 4.1.
ontology editor [17]. The principal OWLGTrEd usageltchains are:

ontology authoring (create and edit an ontologyOWLGrEd, then save or
export it to Protégé and possibly further on tceotbntology processing tools)

- ontology visualization (an ontology that is impartEom Protégé is displayed
graphically to obtain a comprehensible visual view it); we note also the
availability of ontology fragment visualization tean OWLGrEd.

Any combination of these two OWLGrEd usage patteinsluding ontology
round-trip engineering between OWLGrEd and Protége possible, as well.

We note that the OWLGrEd editor is implemented imithDA environment [30],
on the basis of its Graph Diagram Engine [31], TDefinition Framework [32] and
User Dialogue Engine [33]; the TDA environment litses well as all its frameworks
and engines use data structures formed as MOF{84jeneta-models that provide for
easy configuration means, as well as for extenprgramming in high level model
transformation languages.

2. Custom Ontology Visualizations: The Concepts

Custom ontology visualizations in OWLGrEd ontologgitor are defined by means of
ontology visualization profiles. Each ontology \adimation profile consists of a set of
visual item (= abstract field) specifications, wheach field comprises:

(i) field type (e.g. textual/boolean(= check box)/conboa field)

(ii) field appearance (e.qg. visibility and text fontlsjy

(i) visual effects on ontology diagram symbols and ofietds (e.g. symbol color

and shape)

(iv) field semantics (what OWL axioms (e.g. annotati@sestions) or axiom

annotations a value in the field corresponds to).

For an ontology to be visualized in OWLGTrEd in atom way, the corresponding
ontology visualization profile has to be created imported using OWLGrEd
visualization profile plug-in. When ontology credt® such domain-specific extension
of OWLGrEd is saved in OWL Functional syntax naiatior exported to Protégé
ontology editor, the ontology diagram node and efilgjds that correspond to profile
visual items generate the OWL axioms or axiom asmimis, as specified in field
semantics description.

We recall following [4] that OWL 2 provides both ilitin annotation properties
(e.g. rdfs:Label and rdfs:Commentfor commonrdfs namespace, and a number of
others), as well as a mechanism for user-defineibtation property introduction
(some examples of user defined annotation propedie A:DBExpr, A:isimportant
A:isCompositionand A:isDerivedUnion in the example below in Figure 2). An
annotation property can be intuitively thought efea“type” of individual annotations
that ascribe a value to an ontology entity (e.gOANL class, object property or data
property); these individual annotations relating #imnotation property, the annotated
OWL entity and the annotation value are called iWIO“annotation assertions”.
Another use of annotation properties is in annotatiot the OWL entities but rather
the axioms themselves forming the OWL ontology (wse the term “axiom
annotation” in this case).

The most common custom ontology visualization patt®nsists in ascribing the
specific graphical presentations to the OWL built-dor user-defined annotation
properties, with the understanding that the graghpesentation is applied to the
ontology entity whenever the entity is annotated &y annotation with the
corresponding property

Consider, for example, an ontologyfragment that is visualized in a custom way,
as in Figure 2. The graphical notation, if compa@the “basic” OWLGrEd ontology
editor, has the following “custom” user fields:

- anew class field “DB” rendered textually with pref{DB:” and suffix ‘}”,

- aclass field “isimportant” whose value “true” endered as orange background
and 3D shape of the class symbol,

- association role sub-field “isComposition” whosduea“true” is rendered as
diamond symbol on opposite association end, and

- association role sub-field “isDerivedUnion” whosalue “true” is rendered as
prefix “/” to the association role name field.

® We note that there can be other axiom patterrsateattached to visual item
specifications, for instance, all directly spedifigub-classes of some pre-defined class
can be marked as red.

AcademicProgram Course Person Teacher
programName:string courseName:string Trelates
{DB: XProgram} {DB: XCourse}

belongsTo includes teaches’ isTaughtBy
{<relates}

Fig. 2. Simple custom ontology annotation visualization

We desire to have these fields correspond todhenwing axioms:
AnnotationAssertion(A:DBExpr A:AcademicProgram "¥émam")
AnnotationAssertion(A:DBExpr A:Course "XCourse")
AnnotationAssertion(A:isimportant A:Teacher "true")
AnnotationAssertion(A:isComposition A:includes &fu
AnnotationAssertion(A:isDerivedUnion A:relates '&f)

This is achieved by the following semantics dedlares, where each declaration
contains a pattern for the generation of OWL 2 Bonal Syntax axioms on the basis
of the concrete field value (th®value pattern) and the context (e.g. the diagram
element) where the field is placed ($®ubjectpattern):

- AnnotationAssertion(:DBExpr $subject $valde) the field “DB”,

- AnnotationAssertion(:isimportant $subject "trugfdr the value “true” in the
boolean-typed field “isimportant”,

- AnnotationAssertion(:isComposition $subject "trudty the value “true” in
“isComposition”, and

- AnnotationAssertion(:isDerivedUnion $subject "truddr the value “true” in
“isDerivedUnion”.

When an ontology that uses theisimportant A:DBExpr and A:isComposition
annotations (or other OWL built-in or user defirmuhotations whose visual image is
foreseen in a loaded ontology visualization prgfikeimported into OWLGrEd with
ontology visualization profile pre-loaded, the edits able to create the custom
visualization (like Figure 2) automatically.

We note that we have demonstrated assigning “atiootg&emantics” to two
typical UML constructs, namely composition and gndp derived union that are not
available within the “logical part” of OWL (the rioh of composition does not fit well
within the OWL notation framework; the property ided union stating, that a property
does not have other subject-to-object relationspainan its sub-properties, is not
included in the OWL “logics” due to the need to bavdecidable reasoning support).

3. Ontology Visualization Profile Specification

In this section we explain in more detail the oogyl visualization profile and abstract
field concepts outlined in Section 2.
The basic structure and available functionalityhef ontology visualization profile
is characterized by the meta-model in Figure 3. ddre classes of the meta-model are:
o AA#Profile— the profile itself,
o AA#Field — visual item, understood as visible or invisildiagram element
field to be added to the basic editor notation,

AA#Choiceltem an item within a fixed drop-down list associated field;
there can be choice items in both Boolean and &fields; their typical use
is to activate style settings for elements theypaeed in, as well as for fields
therein, and

AA#StyleSetting a “style effect” specification either for a ngwhtroduced
field itself, or for another diagram item (eleméiig)d) on the basis of related
choice item or view selection.

Some important additional classes are:

AA#ContextType- the context of the new field in the editor (kukfrom the
field by fieldContext link), i.e. the type of théeenent (e.g. a class node, or
association line) and the place within the elensefi¢ld structure (e.g. — a top
level place in a class box, or a top level placthiwithe association’s role
description), where the new field is to be added to

AA#Tag- the tags for special processing of field or cediem values (tags
can be ascribed also to visualization profiles thelwes); for the custom
ontology visualization in OWLGTrEd the tags (in théagPattern attribute)
contain the field and choice item semantics detitara for ontology import
from/export to Protégé ontology editor;

AA#View — a collection of style settings that can be aaplboth to the
standard editor fields and to the ones introducgdhle profile; an example
use of views is to enable showing/hiding the cusfiatd information in the
ontology diagram, moreover, any functionality exgbdy style settings can
be induced also by views over any element or figite in the diagram (the
combination of choice item and view conditions $tyle settings is possible,
as well).

The AA#Configurationand AA#TagTypeclasses are meant to help the visualization
profile designer by pre-defining the context angl tgpes that can be used to structure
the visual profile definition environment (e.g. pyoviding tag labels and available
context type structure). TheA#Transletclass allows attaching specific procedures for
handling the fields during their processing witkufitor's property dialogues.

We note that thehasMirror/addMirror notation e.g. inAA#ContextTypeand
AA#ViewStyleSettinglasses is also meant to ease the work of vistadiz profile
designer by allowing specifying the custom fieldsl sstyle effects for only one of
symmetric line ends (e.g. the association ends)dreditor.

AA#Configuration |4 tagType *,| AA¥#TagType toflev CRRED |4
keysting name:string
notation:string isDefault:boolean
T tagType| 7
* AA#Profileltem |pase
comei« profile| tag
N X
AA#ContextType -
= Mt profile * AA#Profile | J AA#Tag
contextTypeName:string RamE SN Eggzsmﬁm
elementTypeName:string |fq|qContext 1 9 = 9
path:stiing <<Comment>> B
mode:string fieldinCorntext “taskName expected one of:
hasMiror:boolean {<ordered} profileFeld -procGenerateltemsClickBox
M ; -procStartvalue
. AA#Field -procFeldEntered
subField {<ordered} * hamesting -procCompose
) stri -procDecompose”
Field 1 rowTypeName.s_trlng proci
stperrie defaultvalue:string :
— prefix:sting translet I
<<Comment>> suffixstring % :
"rowTypeName delimiterstring
expectedtobeone [T 77777 patten:string —AA#Tr.ans let
of: is StereotypeField:boolean X procedure:sting
-TextBox displayPlaceBefore:string choiceltem ransletTaskName:string
-CheckBox propertyEditorTab:string {<ordered}
-ComboBox propertyEditor PlaceBefore:string * ——
-ListBox - . :
i l StyleSetti
MuliLine TextBox ependent A_A#Chomeltem 1new tleSetting
Emply’ B d dson * caption:string
ey (TR AAiewStyeSeting
Choiceltem |elementTypeName:string
selfSyleSetting *_| AA#FieldStyleSetting addMirror:boolean
styleSetting * sourceCompartTypeName:string
sourceChoicelttmName:string
AA#CompartStyleltem
itemName:string
itemType:sting AA#Elem Styleltem -
forNodeCompartboolean ftemName:string lemStleFeature 0.1+ AA#StyleSetting
forEdgeCompartboolean itemTypesting L; V3|UEZSW|‘"9
forAttribCompartboolean stjleltemMode:string(‘"{Node Edge Any}") targetstring)
isRealStyleltem:boolean isElementStyle Setting:boolean
exraContents:string eldStyleFeature 0.1 * | pathistiing

Fig. 3. Visualization profile meta-model

We add some further explanations AA#Field and AA#StyleSettinglasses in the
visualization profile meta-model.

The rowTypeNamaeattribute of AA#Field indicates the type of the field (visual
item) to be added to the diagram elements; we salbefields are allowed tdextBox
and MultiLineTextBox fields only, while choice items may correspond yorb
CheckBoxComboBoxandListBoxtype fields.

The field structure specification iAA#Field class determines both the fields’
placement within the graphical diagram represemat{the displayPlaceBefore
attribute) and within the corresponding elementgperty dialogue within the editor
(the propertyEditorTabandpropertyEditorPlaceBeforattributes). The choice to offer
in the field attributeslefaultValue prefix, suffix (relating the field value in the editor
and in the graphical presentatiomlimiter (for multi-line fields) andpattern (the
symbols allowed in the field) in the visualizatiprofile meta-model is related to the
TDA Tool Definition Framework [32] implementatiorf these attributes.

The isStereotypaattribute forAA#Field marks the field as “stereotype”, with the
meaning that its choice items are allowed to hageddent fields (the fields that are
present in the element only if there is a corredpan choice item activated); the
stereotype fields, however, are not allowed to &eetident fields themselves. We note
that this construction allows simulating of UML itetype tagged values.

The style settings il\A#StyleSettinglass describe the “style effects” brought to
the editor by the instance of the visualizationfifgo Each style setting has the
following components:

- the source — a new field added to the diagram eiefitiee field self-setting), a
choice item to be activated, or a view appliech diagram;

- the target (thearget attribute inAA#StyleSettinglass) element or field to be
affected by the style setting;

- the style item — what style component (e.g. boxpsha&olor, line strength, or
field font face, size, etc.) is to be affected;
the available “real” style items are defined by TB#aph Diagram Engine [31],
and are reproduced also here in Figure 4; furthegriwere are “style items” for
textual target fields that allow adding an extrafpror suffix to the field (the
concrete prefix/suffix is specified in theextraContents attribute of
AA#CompartStylelterdlass);

- the value the concrete style item is to assumedtaee different possible value
sets for different style items).

shapeStyle:Integer
lineWidth:Integer
dashLength:integer
breakLength:integer|
bkgColor:integer
lineColor:Integer

NodeStyle

picture:String

picWidth:Integer
picHeight:Integer
picPos:Integer
picStyle:Integer
width:Integer
height:integer
alignmentinteger

[AY
EdgeStyle PoriStyle
startShapeCode:integer picture:String
startLineWidth:Integer width:Integer

startDashLength:integer
startBreakLength:Integer
startBkgColor:Integer
startLineColor:integer
endShapeCede:integer
endLineWidth:Integer
endDashLength:integer
endBreakLength:Integer
endBkgColar:integer
endLineColor:nteger
middleShapeCode:Integer
middleLineWidth:Integer
middieDashLength:integer
middleBreakLength:Integer
middleBkgColor:Integer
middleLineColor:integer
lineDirection:Integer

height:Integer
alignment:integer

ElemStyle CompartStyle
id:String id:String
shapeCode:integer nrinteger

alignmentinteger
adjustmentnteger
picture:String
picPos:Integer
picWidth:integer
picHeight:Integer
picStyle:Integer
adornment:integer
lineWidth:integer
lineColor:Integer
fon{TypeFace:String
fontCharSetinteger
fontColor:integer
fontSize:Integer
fontPitch:Integer
fontStyle:Integer
isVisible:Boolean
textDirection:integer

Fig. 4. Element and field style settings in TDA Graph Dag Engine (reproduced from [31])

We note that the diagram visualization profile nmatbm is implemented as a
plug-in to OWLGIEd editd; and it allows defining, importing and exportingpfiles,
each profile consisting of field definition set, w&sll as defining graphical views and
applying these to the diagrams (a view may chapgearance for certain box, line and
field types, including an option of hiding certdield types from a diagram).

® See the current version at http://owlgred.lumiplugin/CustomUserFields/

4. Ontology Visualization Profile Use Cases

We demonstrate the use of the developed notatiohtechnology on the concrete
examples arising in the context of semantic datl@sineering. The possibility to
define “annotation semantics” for typical UML constts such as composition and
property derived union has been demonstrated alrea8ection 2. Here we proceed
to examples of database connectivity notation atefjrity constraint modeling.

4.1. Database Connectivity Notation for OWL Ontologies

The creation of semantic information infrastructimeludes the need to populate it
from the existing (legacy) data that are typicadhpred in the form of relational
databases. The task of semantic re-engineeringlafional database data involves
specification of mappings from the relational datsd to RDF/OWL format. The
custom OWL ontology visualization format allows fameation of simple visualization
profile e.g. for ontology entity annotations by RPBWL expressions [35,36] that
document the relation of OWL ontology entities teeit data counterparts in the
relational databasés

Figure 5 contains a re-engineering of mini-Univigrgintology with RDB20OWL
annotations using OWLGrEd with DBExpr-ontology \afimation profile (observe a
similar figure in [35]).

The implementation of the profile is achieved bgiad multi-line DBExprfields
with semantics tag&nnotationAssertion(owlFields:DBExpr $subject $egiu

- to the Class symbol,

- as a subfield to Association role field

- as a subfield to Attribute field within the clasgmbol.

___________PersonD | _Thing{owl}
IDValue:string{DB: [[T]l.IDCode {DB: [S]].IDC ode}
{DB: T=XTeacher {uri=(PersonID'IDCode)}}{DB: S {disjoint]

=XStudent {uri=('PersonID',IDCode)}}}

erson 0..
{DB:[[Teacher]][AutolD->[[T]}}[personID
{DB:[[Student][AutolD->[[S]}]

Person
personName:string{DB: [Teacher] TName}
{DB: [Student]].SName}

AcademicProgram
programName s tring{DB: PName}
{DB: XProgram}

enmnolled
{DB:->}

Stud belongsTo[{DB:->}
tudent
7Tea(:her e kenBy takes
{DB: XTeacher} {<>teaches}
{DB:=>XRegistration->}|, includes,
{DB:=> Course

{disjoint}
{complete}

—

Assistant

Lewel="Assistant’}

{DB: [Teacher]],

teaches {<>takes

courseName:string{DB: CName}
{DB: XCourse}

AssociateProfessor
{DB: [Teacher]]Leel="
AssocProf}

Professor
{DB: [Teacher]],
Lewel="Professor}

OptionalCourse

{DB: [Course]],
isRequired=0}

{complete}
{disjoint}

MandatoryCourse
<isTaughtByonly Professor
{DB: [Course]],isRequired=1}

Fig. 5. RDB20OWL database connectivity assertion visuibra

" We refer the reader to [27] for discussion of di#f@ RDB-to-RDF/OWL mapping
formalisms of which RDB20OWL is an option; our primaaim here is to illustrate the
applicability of our ontology visualization techogly.

Some of the annotation assertions, generated fr@&xpr-annotations during the

ontology export from OWLGTrEd to Protégé are, abfes:

AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr
AnnotationAssertion(owlFields:DBExpr

:AcademicProgram "XProgram")

:Assistant "[[Teacher]],Level='Assistant)
:AssociateProfessor "[[Teacher]],Level='AssocProf'")
:Course "XCourse")

:courseName "CName")

:enrolled "->")

:IDValue "[[S]].IDCode")

:IDValue "[[T]].IDCode")

:MandatoryCourse "[[Course]], isRequired=1")
:OptionalCourse "[[Course]],isRequired=0")
:personiD "[[Student]][AutoID->[[S]]")

:personiD "[[Teacher]][AutoID->[[T]]")

:PersonID "S=XStudent {uri=('PersonID',IDCode)}}")
:PersonID "T=XTeacher {uri=('PersonID',IDCode)}}")
:personName "[[Student]].SName")

:personName "[[Teacher]].TName")

:Professor "[[Teacher]],Level="Professor'")
:programName "PName")

:Student "XStudent")

:takes "=>XRegistration->")

:Teacher "XTeacher")

teaches "=>"

4.2.Integrity Constraints in RDF/OWL Database Schemaife

The use of standard OWL “open-world assumption” @etics [37] may in certain
cases of semantic database schema specificatiaug@oun-intended results. For
instance, in the case of ontology of Figure 1:
- if ateacheiX who is not a professor (e.g. an assistant) hasteegd by an error
as taking fakeg a course, instead of teachirtgdche}it, the system infers that
X'is a student since only students are allowedk® sgacourse;
- if a course belongs to two academic programs (withhames specified yet),
these would be inferred to be the same academgraomg
- if there is a student not taking any course, ttetesy will not regard this as a
problem, since the course might not yet be spetkifie
- if a professor has a recorded salary of 9500, yatem would infer that there is
also another salary for the professor that is 0000

The integrity constraints (the OWL ontology statemseinterpreted in “closed
world” sense and not used in the OWL inference dmet just checked, if they are
satisfied by the present data) [27,28] are nowadaysmonly invoked to handle these
situations, supported also by the StarDog datadasieonmerit .

We do not go into details of integrity constraipesification alternatives but just
present an ontology visualization profifer OWLGrEd that that foresees a possibility
to attach an (i)/(c)-mark (“i" for inference, “c'of constraint) to visual places that can
be identified as “holding” the concrete axiomsjrakigure 6 for mini-University.

8 http://stardog.com/
® The extended editor is available as OWLGIEd/S fhotp://owlgred.lumii.lv/s

Thing{owl} i {() disjoint}
namel/i/:(c) string{(c) func}

B AcademicProgram
—— erson c) programName:string{<(i) name’
<<Comment>> "All persons, including teachers and (©) prog o<®) } BewngSTO (©1
"All persons, | _ _|students”
including teachers personName:string{<name} enrolled|{>(c) takes o belongsTo}
and students” personID:string[0..1] 01 (c)1
i

Professor |} -------4 _<s(disjoint>> _|__| Student)
<(c) salarysome |
integer [>10000] {G) disjoing)

Assistant

teaches i
isTaughtB: {<(i) relates} |passed {<>(i) teaches}
Teacher <>takes} <(c) takes} |(c)1..(c)10

<<(i) equivalem»ﬁ- —————— salaryinteger relates/ié Course jncludes
T

courseName:string{<name}

: PermanentTeachingStaff
M+WQT <teaches some MandatoryCourse tl_ MandatoryCourse
<isTaught by only (Professor or
CL teaches some [1.*]|(PermanentTeachingStaff and salarysome
integer [> 8000]))

Fig. 6. Integrity constraint specification for mini-Unigty ontology

Some positions for (i)/(c)-markings in the extenéelior are, as follows:

- object property line start and end positions, oty domain and range
assertions for the property (e.g. propeegchesor takesin Figure 6);

- data property name prefix, reflecting data propddsnain assertion;

- equivalent classes, disjoint classes and supeedaassertions within class
nodes (e.g. assertionsalary some integer [>10000jh Professorclass); in a
similar way the notation is extended also to edeiva disjoint and super-
properties (e.gs(i)name assertion fopersonNam@roperty inPersonclass)

- property chain assertions

- object and data property characteristics ajfunc}for namein classThing

- cardinality restrictions (e.gc)1..(c)10cardinality fortake$

- generalization lines SubClassOfnarkers) in the graphical form (e.g. for
subclasses ofhing, PersorandTeacherclasses)

- disjoint/complete assertions placed at generatinadiet descriptors (forks), e.g.
the fork joining subclasses dtacherclass.

In the example, for instance, the axi@hjectPropertyDomain(A:takes A:Student)
is annotated to becom@®bjectPropertyDomain(Annotation(C:isConstraint “8)
A:takes A:Studentjor a suitable namespad@ holding theisConstraintannotation
property. The visuat-notation placed at the beginning takesrole link is obtained
from a “DomainMode” field under the associationerdbkes The corresponding
semantics specification for the “DomainMode” fieldausing the considered
ObjectPropertyDomaiaxiom annotation ig\nnotation(C:isConstraint “true”)

5. Conclusions

The presentation and examples considered hereneuthie potential of custom
ontology visualization profiles in OWLGrEd, as wels their importance in the

situation of data structure specification for setitaimformation systems. There should
be no principal problems to use the developed freonle also for annotations to be

added to OWL for specifying user interface form gation on the basis of the OWL

ontology structure, or different kinds of integritgnstraints specification (e.g. the ones
written in SPARQL [38] language).

The reader is invited also to come up with specifatation for his/her own
favorite or custom OWL annotation properties.

Given the generic nature of the diagram visualatprofiles it would not be
difficult to apply the constructs developed hergoaio other editors created within the
TDA + TDMM environment (see e.g. [39]). We notealhat style setting on style
attribute level has been done here for the firsetfor the TDA environment.

Due to the open and model-based structure of tha &vironment [30] and its
Tool Definition Framework [32] where the OWLGrEdited is implemented in, there
has been a possibility to implement the ontologgualization profile mechanism
(including profile configuration form descriptior)y MDA-style high level model
transformations, written in LUA library IQuery [40]

References

[1] Resource Description Framework (RDRftp://www.w3.org/RDF/

[2] RDF Vocabulary Description Language: RDF Schemtig,//www.w3.org/TR/rdf-schema/

[3] Smith, M. K.; Welty, C.; and McGuiness, D.: OWL Wélmtology Language Guide, 2004

[4] Motik, B; Patel-Schneider P.F; Parsia B.: OWL 2 Waitology Language Structural Specification and
Functional-Style Syntax, 2009

[5] Tim Berners-Lee, James Hendler and Ora Lassilee 'Sémantic Web", Scientific American, May 2001,
p. 29-37.

[6] Linked Datahttp://linkeddata.org

[7] Pellet, reasonéttp://clarkparsia.com/pellet

[8] FaCT++, reasonehttp://owl.man.ac.uk/factplusplus/

[9] Hermit OWL Reasonehttp://hermit-reasoner.com/

[10] http://virtuoso.openlinksw.com/

[11] AllegroGraph http://www.franz.com/agraph/allegrograph/

[12] OWLIM, http://www.ontotext.com/owlim

[13] StarDog, http://stardog.com

[14] Brockmans, S., Volz, R., Eberhart, A., Loffler, Wisual Modeling of OWL DL Ontologies Using
UML, Proc. of ISWC 2004, LNCS 3298, pp. 198-213020

[15] ODM UML profile for OWL, http://www.omg.org/spec/Q@/1.0/PDF/

[16] TopBraid Composer, http://www.topquadrant.com/prisii B_Composer.html.

[17] Protégé 4, http://protege.stanford.edu/

[18] OWL Viz, http://lwww.co-ode.org/downloads/owlviz/

[19] Barzdins, J.; Barzdins, G.; Cerans, K.; Liepins, $rogis, A.: OWLGrEd: a UML Style Graphical
Notation and Editor for OWL 2. In Proc. of OWLED AW 2010.

[20] Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis,WML Style Graphical Notation and Editor for OWL 2.
In Proc. of BIR'2010, LNBIP, Springer 2010, vol.,G# 102-113, 2010.

[21] Unified Modeling Language: Infrastructure, versichl. OMG Specification ptc/06-04-03,
http://www.omg.org/docs/ptc/06-04-03.pdf

[22] Unified Modeling Language: Superstructure, versi@il. OMG Specification ptc/06-04-02,
http://www.omg.org/docs/ptc/06-04-02.pdf

[23] J.Barzdins, G.Barzdins, R.Balodis, K.Cerans, et.d2006). Towards Semantic Latvia. In
Communications of 7th International Baltic Confezenon Databases and Information Systems,
pp.203-218.

[24] G.Barzdins, E.Liepins, M.Veilande, M.Zviedris: Samic Latvia Approach in the Medical Domain.
Proc. 8th International Baltic Conference on Dasaisaand Information Systems. H.M.Haav, A.Kalja
(eds.) Tallinn University of Technology Press, ®-102. (2008).

[25]

[26

(38]
[39]

[40]

G.Barzdins, S.Rikacovs, M.Veilande, and M.Zviedri®ntological Re-engineering of Medical
Databases, Proceedings of the Latvian Academy @&n8es. Section B, Vol. 63 (2009), No. 4/5
(663/664), pp. 20-30.

Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, Advanced ontology visualization with OWLGTrEd. In
Proc. of OWLED 2011, 2011.

Tao, J.; Sirin, E.; Bao J; McGuinness, D.: Intgg@bnstraints in OWL. In Proc. of AAAI 2010, 2010.
Sirin, E; Smith, M; Vallace, E: Opening, Closing s — On Integrity Constraints. In Proc. of
OWLED 2008, 2008.

OWL 2 Manchester Syntax, http://www.w3.org/TR/owmnchester-syntax/

Barzdins J., Rencis E., and Kozlovics S. The Tramsation-Driven Architecture, Proc. of 8th
OOPSLA Workshop on Domain-Specific Modeling. NadleylUSA, 2008, pp.60-63.

Barzdins J., Cerans K., Kozlovics S., Rencis Ed @arins, A. A Graph Diagram Engine for the
Transformation-Driven Architecture, Proc. of 4thntdrnational Workshop of Model-Driven
Development of Advanced User Interfaces, Floridi@A, 2009, pp.29-32.

J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, Rpins, E. Rencis, A. Sprogis, A. Zarins. An MDE-
based Graphical Tool Building Framework. In ScigmtPapers, University of Latvia, 2010, Vol 756,
ISSN 1407-2157, pp. 121-138

S. Kozlovics, A Dialog Engine Metamodel for the fiséormation-Driven Architecture. . In Scientific
Papers, University of Latvia, 2010, Vol 756, ISSAMI-2157, pp. 151-170

OMG's MetaObject Facility, http://www.omg.org/mof/

K.Cerns, G.Bimans, RDB20WL: a RDB-to-RDF/OWL Mapping Specificati Language //
J.Barzdins and M.Kirikova (eds.), Databases anorinétion Systems VI, I0S Press 2011, p.139-152.
G.Bimans, KCerans, Advanced RDB-to-RDF/OWL mapping facilities iDB20OWL // Proc. of BIR
2011, Riga, Latvia, October 7-8, 2011. LNBIP 90, p#2-157. Springer, Heidelberg, 2011 (ISBN:978-
3-642-24510-7

Motik, B.; Patel-Schneider, P. F.; and Grau, B.@WL 2 Web Ontology Language Direct Semantics,
2009

SPARQL 1.1 Query Language, http://www.w3.0rg/TR2Q¥D-sparql11-query-20100601/

J. Barzdins, K. Cerans, A. Kalnins, M. GrasmanisK8zlovics, L. Lace, R.Liepins, E. Rencis, A.
Sprogis, A. Zarins. Domain Specific Languages farsiBess Process Management: a Case Study.
Proceedings of DSM’'09 Workshop of OOPSLA 2009, @ullay, Florida, USA, pp. 34 — 40, 2009.

R. LiepinS. Library for model querying — IQuery. In Proceegi of Workshop on OCL and Textual
Modelling, 2012.

