OWLGTrEd/S: a graphical schema editor for Stardog
OWL/RDF-databases

Karlis Cerans, Guntis Barzdins, Renars LiepinsulSprogis, Julija Ovcinnikova

Institute of Mathematics and Computer Science, Usitseof Latvia
{ Karlis.Cerans, Guntis.Barzdins, Renars.Liepins, Agt8progis,
Julija.Ovcinnikova}@Ilumii.lv

Abstract. The developers of Stardog OWL/RDF DBMS have piorccereew

use of OWL as a schema language for RDF databakissisTachieved through
explicit splitting of the OWL ontology into “openaxld assumption” (OWA)

inference part and “closed world assumption” (CWAJ}egrity constraint
validation part. This presents a challenge for ¢gg@WL editors to support
seamless ontology authoring with axioms both in O'M CWA modes. For
example, in UML-style graphic diagrams subclasati@hship more likely will

be included in (OWA) inference while cardinalityshéctions are more likely to
be interpreted as constraints (CWA). We present I@VeLGrEd/S — an

extension of the intuitive yet compact graphical Uktyle OWL ontology

editor OWLGrEd with the editing facilities for OWantologies together with
integrity constraints within a single ontology sofee

Keywords: OWL, integrity constraints, open-world, closed-vahrigraphical
editor, OWLGrEd, UML class diagram

1 Introduction

Web ontology language OWL [1,2,3] is defined to éndepen world assumption”
(OWA) semantics and its traditional uses are witmadeling domains that admit
partiality of the explicitly specified knowledgen the recent years there have been
also efforts to introduce “integrity constraintseg e.g. [4,5,6]) over OWL ontology
models through “closed world assumption” (CWA) seftits, meant to require
certain “completeness” properties of the constidictentology models. The
“completeness” or “closedness” assertions often eappvery natural in e.g.
information system specifications. For instances #ssertion that a person has a
telephone number, in the situation that for a pergono telephone number is
specified, might well require an interpretationraising an error, rather than inferring
that x really has a telephone number but we justtdmow what the number is. The
integrity constraints are to be added to OWL, if DW to be used in the situations
where the CWA interpretation of the knowledge iguieed.

The approach of integrity constraint specification[5,6] is remarkable due to
reuse of OWL syntax itself for integrity constraigpecification. The integrity
constraint semantics for OWL is developed in [5] ipjroducing the notion of
“extended knowledge base” (or, extended ontologyp gair <K,C>, where K is a

knowledge base itself (interpreted according to QWAd C is integrity constraint
specification (interpreted according to CWA), bettpressed in OWL syntax.

The Stardo§ OWL/RDF database brings forward the idea of OWlkegnity
constraint usage by offering an implementation wifegrity constraints through
extended knowledge bases. As the developers odic&&tquut it, the Stardog database
environment materializes the idea of using “thé éxpressivity of OWL and OWL 2
.. as a schema language for RBFOn the practical application side, this opens a
possibility for a wide range of applications of f@xded) OWL in information base
structure (schema) specification. This, howevesesan issue of suitable notation
for extended OWL notation rendering and editingmparing RDF/OWL databases
with other database paradigms, it can be easilicewtthat there are widely used
visual schema development tools for relational lolztas; the visual UML class
diagram notation [7,8] is principal schema defmitilanguage for object repositories
and databases. It would therefore be of utmost itapoe for practical usability of
RDF/OWL databases to offer a graphical modelingyleage for database schema
authoring and visualization.

There are a number of approaches and tools (se¢9§.@0DM [10], Top Braid
Composer [11], OWLGrEd [12,13]) implementing (sowsiant/extension of) UML
class diagram notation as visual notation for OWitotbgies; these may serve as a
good starting point for developing visual notatitimat supports also extended
ontology (including the integrity constraints) aoing and visualization. There is,
however, a general problem to be solved, namelydhavercoming the split of the
extended ontology into OWA part (the “inferencelttpased for ontology/knowledge
base model construction) and CWA part (the intggrinstraints, to be validated on
the basis of the constructed model). A simple “Sohi corresponding to modeling
visually only the OWA-part of the extended ontolcgyyd leaving the CWA-part for
specification with other means (e.g. some textyatax), although contributing to the
understanding of the ontology data structuring,sduog allow to reap the full benefits
of expressing the CWA-part in OWL syntax and graphlUJML-based presentation
of OWL ontologies&

A general observation allowing combining the exehdontology OWA
(inference) part K and CWA (constraint) part C witla single schema is based on a
simple identity <K,C>= <K,KUC> that is yet not well stressed in the literatuae,
least in the context of Stardog RDF database. i&igtity asserts, in terms of [5],
that every model M of the knowledge base K (the ehdd is built from K using
OWA reasoning mechanisms) that satisfies the cainsér C, satisfies also the union
of assertions KIC, where both K and C are viewed in the same clogatt
assumption (CWA) sense. In other words, in evergehof the extended knowledge
base <K,C> both the assertions from K and the tsssrfrom C are merely true

1 http://stardog.com/

2 cf. http://clarkparsia.com/pellet/icv/

3 We note that Stardog database documentation /ktgsdog.com/docs/sdp/ also use custom
UML notation to describe the structure of their ragde.

4 Clearly, this depends on the existence of goodhicap(UML-based) notation for full OWL
2, including the features (e.g. various kinds oftrietions) that are typically used in
constraint specification. We claim that the OWLGré&tditor offers syntax for most of OWL
2 constructs that is easier comprehensible thanglan textual rendering.

regardless of “OWA” or “CWA” or any other “senseis’ which this truth is meant.
This joint assertion set KC (that is, the union of OWA and CWA parts of the
extended ontology) is the one that can be visudigraphically (or managed in other
editors) as the logical assertion set that is validevery model of the extended
ontology.

The issue remains, of course, how to single outQNeA-part out of the joint
OWA+CWA logical schema of the extended ontology. Wgue here that in many
cases this can be achieved by “meta-level” spfjtthiased just on axiom types rather
than performing splitting on the concrete axiomelevlhe justification for this
approach comes from UML class diagrams where sumfuitive” split has been
successfully used for decades, where e.g. subanlaisdion is used in “inference”
sense (an instance of a subclass is assumed edaminstance of super-class) and
the cardinality notation is used in the constraise (the model is assumed to have
an error, if a cardinality expression is not s@i$f. To extend the approach, we have
defined a universal “split definition language” adp with some typical splits as
examples. We have implemented this meta-level tisgit procedure as a
complimentary part of OWLGrEd/S editor; howevergdin equally be used with any
other OWL editor such as Protégé [14].

The “meta-level” splitting procedures may appedfigent for many uses of the
editor in a “disciplined” ontology/database schemahoring mode, however, for
visualization of an arbitrary extended ontologyireef granularity may be necessary;
therefore we offer extended graphical notation WIGSrEd/S editor allowing mar-
king up the extended ontology axioms as belonginfé either OWA or CWA part.

In the following sections of the paper we reviewstfithe principles of UML
notation usage for OWL ontology specification ane basic principles of OWLGrEd
ontology editor that is based on compact notatiomkining UML class diagram
graphical features with textual rendering of ade@h©WL constructs not fitting into
UML. Then we move to the main subject of the papeintroducing OWL integrity
constraints into OWLGTrEd, outlining two principallstions of splitting the ontology
into OWA and CWA parts — the general one (metatlspétting) applicable equally
well to OWLGrEd/S and other ontology editors (e2gotégé [14]), and the specific
one (assertion-level splitting) that is based omking of individual axioms within the
editor as belonging to OWA or CWA part of the ontp/.

2 Visual ontology modeling with OWLGrEd

Despite the semantic differences between the UML @WL modeling approaches,
there is certain similarity of concepts in UML a@WL that serves as the basis of
using UML class diagrams for presenting core fezgtwaf OWL ontologies. So, OWL
classes can be presented as UML classes, OWL ofbjeperties can be typically
presented as association roles in the UML diagr@WL data properties can be
presented as attributes in the UML class diagradd/L SubClassOf axiom can
presented as UML class diagram generalization. eTfgerhowever, a very important
difference between OWL and UML already on this veagic correspondence level,

where in OWL the object properties and data prégerare independent entities,
while in UML both the association roles and atttésuare structured in accordance to
their domain classes. The assumption that undetliesuse of UML in OWL
modeling is that typically there is no more thasirggle domain and range assertions
for any data/object property in OWL, and, therefoma appropriate place for the
data/object property display in the UML diagram che found. A suitable
representation solution, of course, has to be falsa for the case when there appear
to be several domain/range assertions for some Objéct or data property.

2.1 Naive UML modeling of OWL

In addition to syntactic structuring of associatiotes and attributes in accordance to
their domain classes, UML class diagrams have aunagtion that association
roles/attributes with equal names attached to miffedomain classes denote different
entities. The naive translation of a UML model whawo classes A and B both have
an attribute p:string into OWL would be to intro@ua single data property p with
domain AUB and range xsd:string (we call this “OR"-semantmf p domain
assertions being A and B in the UML diagram). Fggdr shows simple company
ontology, adopted from Stardog documentation gageformally using OWLGrEd
notation with the naive OR-semantics.

1 *

Dependent 1.4 -)
name:string[0..1] Project ecieves_funding_from
sexstring[0..1] 1..* works_on | numberinteger0..1] Funding_Body
DOB:date[0..1] name:string[0..1] code:string[0..1]
relationship:string[0..1]

* 1 1.4
is_responsible_for| handles receives_funding_from

has_dependents

js_superior_of |1..*
Employee
SSN:string[1]
name:string[0..1] 1 1 works_i
sexstring[0..1]
address:string[0..1] 1 1

DoB:dai..1] l—1 Project Leader manages

N]
1. supervse nationality:s tring[*]
0.1

Supervisor Manager |1

i,

Department
numberinteger[0..1]
name:string[0..1]

I
"+

Fig.1. Company ontology in OWLGrEd with naive OR-semastic

We note e.g. data propentyame whose domain, in accordance to the OR-semantics
would beDependent OR Employee OR Project OR Departnidmie also that OWL
classes, object and data properties, their domaéhrange assertions, sub-class-of
relations as well as cardinality restrictions camiindeled here in a satisfactory way.
Although intuitively appealing, the OR-semantics WML class diagrams has
certain drawbacks that prohibit its effective usefull OWL ontology modeling.
Suppose, for instance, that we would like to makassertion about the data property
namethat it is a sub-property of some more generah gabpertyidentifier (not

5 http://stardog.com/docs/sdp/

shown in Figure 1). There is an easy notatiame:string {<identifier}that can be
used to express the sub-property fact, howevepthblem appears with the place,
where this assertion is to be put in the diagramadlst be put at all places where
nameis mentioned, or in at least one place? Eithethef choices would lead to
consequences counterintuitive to OR-semantics, avhdére change ofname
description at e.ddependantlass would affect its behavior at any other ¢lagsere

it is mentioned (e.gProject class). The problem stems from the fact that OWL
properties possibly may be depicted in the UML glasagram in several “OR-
related” places; the affected are possibilitiewistial depiction of any characteristic
that is pertinent to a property (including e.g.le®ivity, transitivity and property
chains of object properties).

2.2 The OWLGTrEd notation

OWLGTrEd provides a complete graphical notation@WL 2, based on UML class
diagrams. We visualize OWL classes as UML classleta properties as class
attributes, object properties as associations, viddals as objects, cardinality
restrictions on association domain class as UMldioatities, etc. We enrich the
UML class diagrams with the new extension notatieng. (cf. [12,13]):

« fields in classes foequivalent classuperclas@nddisjoint class
expressions written in Manchester OWL syntax [15];

« fields in associations and attributes éguivalentdisjoint andsuper
properties and fields for property characteristicg,,functional transitive etc.;

« anonymous classes containieguivalent class expressitt no nhame (we
show graphically only those anonymous classesntbed to have graphic represent-
tation in order to be able to describe other omgjplooncepts in the diagram);

« connectors (as lines) for visualizing binaligjoint, equivalent etc. axioms;

« boxes with connectors for n-agysjoint, equivalent etc. axioms;

 connectors (lines) for visualizing object propedsgtrictionssome only,
exactly(e.g.Giraffe < eats only Leah Figure 3), as well as cardinality restrictions.

OWLGTrEd provides option to specify class expressioncompact textual form
rather than using separate graphical element foh dagical item within class
expression. If an expression is referenced in pleltplaces, it can optionally be
shown as an anonymous class. An anonymous classoisised as a base for property
domain/range specification, if this domain/rangaasa named class.

Figure 2 contains re-engineering of the Figure ZIology in accordance to
“genuine” OWLGTrEd diagram semantics, using “AND’rRsantics (intersection) for
domain/range of properties that are mentioned wersé places in the ontology
diagram. In the example this means, in essencejingting of the multiple
mentioning of a property (e.game or receives_funding_frojmwithin the ontology
diagram. We demonstrate the use of anonymous slagsg. =Department or
Projec) for data and object property domain visualizatias well as using distinct
identifiers for different properties along with riatlucing common super-property for
the case when all these properties have to beeef@intly by the same name.

Thing{owl} Funding_Body =Department

name:string{func} code:string{<name} |receives_funding or Project
) . from numberinteger{func}
Person G
personName s tring{func{<name} overnment_
DOB:dateffunc} | Agency

sexstring{func}

"\

works_on * Project
js_superior_of 1, *[

{complete} is_responsible_for 1..*

] handles 1.*

Employee
] 1

} nationality:s tring

salary:decimal{func}

y <<disjoint>> Department |
W SSNstring[L. *J{func} pedsionz | manages 1
Dependent supenises| Lg__* WOFKUHJ\
<personName some string | 1. .

address:string{func}
relationship:string{func} Manager

-

[Supervisor lo.1

| E——
Fig.2. Company ontology re-engineered in OWLGrEd

Project_Leader

Figure 3 [13] illustrates some further OWLGrEd rimta (e.g. class restrictions in
textual and graphical forms and annotation asses}ion the basis of popular African
Wildlife ontology example [16].

eaten-by-animal
{<eaten-by}

Animal
weightinteger

<<disjoint>> Herbivore
t b 1. ____ Carnivore [|=Animal
Tree Tasty-plant eaten-by some = Animal and (eats only
and (eats some Animal) (Plant
is-part-o or (is-| part of only Plant)))

= Panthera leo" L|on only| solmf Giraﬁe
eats only 1.7 Label("giraffa

camelopardalis")

Fig. 3. Example: OWLGTrEd notation for a variation of Afsit Wildlife ontology

The OWLGTrEd notation allows enriching the ontologfyFigure 2 with assertions,
adopted from Stardog documentation and charaategridieeper properties of the
model (Figure 4). We note that we are currently presenting the ontology model,
and we are not yet discussing its OWA/CWA intergtiens.

The OWGTrEd editor offers the ontology interoperapil (import/export)
functionality with Protégé 4.1. ontology editor [14'he two principal OWLGrEd
usage tool chains are:

- ontology authoring (create and edit an ontolog@WLGrEd, then export it to
Protégé, where it can be analyzed and submittedhter ontology processing
tools)

- ontology visualization, where an ontology that nsported from Protégé is
displayed graphically to obtain a comprehensibéei@i view on it.

Any combination of these two OWLGrEd usage patteinsluding ontology

round-trip engineering between OWLGrEd and Prot&gépossible, as well.

<<DataType>> Thing{owl} Funding_Body =Department
date {XMLSchema) name:string{func} code:string{<name} receives_funds_from | _Or Project

number:int{func}

L Government__ =
F Agency
[Project
<number some integer
Person works_on 0.8 ' < 5000]
personName:string{funcf<name} is_responsible_for {<works_on} 1..
DOB:date{func}
sexstring{func} handles
{<>has_dependent}|
{complete is_superior_of L

>is_superior_of o is_superior_of
>manages o0 inverse (works_in)
2.7

=Project
and (receives_funds_from some
Government_Agency)
<inverse (works_on) only
(Employee
and (nationality value "american"))

Employee
tnationality:s tring
salarydecimal{func}

-

SSN:string[1..*Kfunc}
supenvses| 2.* : Depanment
has_dependent {<is_superior_of} 1_<<disjoint>> | _ | <number some integer manages {<works_in} 1
| {<>handles} 1..10| works _in
Dependent >works_on o
<personName some string inverse (handles))
address:string{func} | 1 |
relationship:s tring{func]
p SR k——|<salarysome decimg\\ll[lgl].%gggo.oo , <300000.00] |
1
Supernvisor 0.1 Project_Leader
<salary some decimal[>100000.00] <salarysome decimal[>50000.00]

Fig.4. Company ontology in OWLGrEd, with assertions

3 OWLGTrEd/S: Incorporating Integrity Constraints

The idea of integrity constraint incorporation iN@WLGrEd/S is based on the
understanding that the editor simultaneously vigaal the extended ontology,
including both axioms that are present in OWA aMdACmodes. This corresponds to
the understanding that in any model of the exteratedlogy both OWA and CWA
axioms are equally valid; with the only differenbeing in the contribution these
axioms are bringing into the construction of thedelofrom the explicitly given
knowledge base. The task of incorporating the iittegonstraints into the editor is
thus transformed into the task of splitting thepipiaally specified extended ontology
into OWA and CWA parts.

3.1 Generic Ontology Splitters

We argue that for use of OWLGrEd/S in schema airtbomode for RDF/OWL

databases a typical scenario for extended ontokiting would be to channel
extended ontology axioms “of the same kind” inte #ame group of either OWA or
CWA axioms. For instance, one may require all Sab8Df(A,B) axioms, where B is
a named class, to be interpreted in OWA mode, while all cardinality restrictions
to be interpreted in CWA mode. There can be varfousology splitting disciplines”,

however, often these can be stated in a generi¢c iwdgpendent of specific ontology

(we note that StarDog reasoning type&VL 2 QL, OWL 2 EL, OWL 2 RL, RDF
Schema, OWL 2 DL also describe such “splitting igces”, where an axiom is to
be interpreted in OWA mode only if it falls withthe respective reasoning type).

In the light of this observation we introduce ifBWLGrEd/S the construct of
semantics profildhat can be ascribed to any ontology that is eckat displayed in
the editor.

Formally, a semantics profile is a function thategi an ontology (a set of OWL
axioms) O, produces two sets of axioms OWA(O) aMdAQO), whose union has the
same logical meaning as O (i.e. OWA(O)CWA(O) is valid on a model M if and
only if O is valid).

We note that a semantics profile allows producingatended ontology (i.e. both
OWA and CWA parts) from a single syntactic OWL fitherefore, if the level of
granularity provided by the semantics profile leiglsufficient, no other means of
integrity constraint incorporation are requiredhe ontology editor.

The proposed semantics profile definition languagebased on describing
translation of the source ontology O axioms: eaxtora A is translated into its
corresponding axiom sets OWA(A) and CWA(A). A tygicranslation behavior for
an axiom A would be to “move” axiom A either intdNM&A(A) or CWA(A) entirely,
leaving the other set empty. Meanwhile for somems it might be necessary to “re-
factor” them into parts, and then process partsKraa OWA or CWA, or re-factor
further) separately. The possible axiom re-factprines are summarized in Figure 5,
every semantics profile will have to specify, whhthese re-factoring rules have to
be applied prior to executing the semantics profile

(i) EquivalentClasses(?X ?Y) -> {SubClassOf(?X ?Y), SubClassOf(?Y ?X)}
(i) EquivalentClasses(?X1 .. ?Xn) -> {EquivalentClasses(?Xi ?Xj) | 1<i<j<n}
(iii) DisjointClasses(?X1 .. ?Xn) -> {DisjointClasses(?Xi ?Xj) | 1<i<j<n}
(iv) Samelndividual(?X1 .. ?Xn) -> {Samelndividual(?Xi ?Xj) | 1<i<j<n}
(v) Differentindividuals(?X1 .. ?Xn) -> {Differentindividuals(?Xi ?Xj) | 1<i<j<n}
(vi) SubClassOf(?X ObjectIntersectionOf(?Y1 .. ?Yn)) ->{ SubClassOf(?X ?Yi) | 1<i<n}
(vii) SubClassOf(?X ObjectExactCardinality(?Y ?Z ?W))->{ SubClassOf(?X ObjectMinCardinality(?Y ?Z ?W)),
SubClassOf(?X ObjectMaxCardinality(?Y ?Z ?W))}
(viii) SubClassOf(?X DataExactCardinality(?Y ?Z ?W)) -> { SubClassOf(?X DataMinCardinality(?Y ?Z ?W)),
SubClassOf(?X DataMaxCardinality(?Y ?Z ?W))}
(ix) DisjointUnion(?X ?Y1 .. ?Yn)->{DisjointClasses(?Y1 .. ?Yn),
EquivalentClasses(ObjectUnionOf(?Y1 .. ?Yn) ?X)}
(x) EquivalentObjectProperties(?X1 .. ?Xn) -> {EquivalentObjectProperties(?Xi ?Xj) | 1<i<j<n}
(xi) EquivalentObjectProperties(?X ?Y) -> {SubObjectPropertyOf(?X ?Y), SubObjectPropertyOf(?Y ?X)}
(xii) EquivalentDataProperties(?X1 .. ?Xn) -> {EquivalentDataProperties(?Xi ?Xj) | 1<i<j<n}
(xiii) EquivalentDataProperties(?X ?Y) -> {SubDataPropertyOf(?X ?Y), SubDataPropertyOf(?Y ?X)}
(xiv) ClassAssertion(ObjectintersectionOf(?X1 .. ?Xn) ?Y)->
{ClassAssertion(ObjectintersectionOf(?Xi ?Y) | 1<i<n}
(xv) f(ObjectComplementOf(ObjectComplementOf(?Y))) -> {f(?Y))} for any context f
(xvi) f(ObjectComplementOf(ObjectUnionOf(?X1 .. ?Xn))) -> {f(ObjectIntersectionOf(?X1 .. ?Xn))}
for any context f
Fig.5. Re-factoring rules

6 http://stardog.com/docs/sdp/

Semantics profile definition language

The semantics profile definition consists of a seme of rules of either the forr®’
(the unconditional rules), o} :- C1, .., Cr.(the conditional rules), where:
e Q is an assertion in one of the formBWA(p) CWA(p) with p in OWL

Functional syntax, possibly with the following pédmlders:
? — matching any OWL Functional syntax term
?.. — matching any list of OWL Functional syntaktgms
?X — matching any OWL Functional syntax term, addally marking the
term by the meta-variable name “X”
exp— matching the regular expressiexp composed of literals; and

e Cifor 1<i<nis the rule condition.

The processing of an ontology axiofnconsists of finding the first rule in the
sequence, where the axioms’ OWL functional syntascdption matches the
assertion pattern p and satisfies the correspondiegconditions. When such a rule is
found,A is moved into OWA or CWA sets accordingly.

The rule conditions can be built over the entiréoax A (denoted within the
condition by?A) and the term&X that are marked within the rule’s assertion part,
using logical connectives over:

e simple syntactic predicates, suchisiEntity(?X)

e matching predicate -:-, allowing to matel or ?X to OWL Functional syntax

term with placeholder®, ?.. andexp as described above,

e simple semantic predicates in the foisAsserted(?f) where ?f is OWL

Functional syntax expression with containing pdssiérm marker8X.
Consider, for instance, the rule (QWA(SubClassOf(?X ?Y)isEntity(?Y) or ?Y-:-
DataHasValue(?..) or ?Y-:-AllValuesFrom(?..) or 2YObjectComplementOf(?) or
?Y-:-DataMaxCardinality(['0’'1"] ? ?) or ?Y-:-DataMinCardinality(['0’|'1] ? ?).
This rule marks as OWA tho&ubClassOf(?X ?Y¥gxioms, wher@Y has some of the
forms, admitted for superclasses in OWL 2 RL peofil7].

The following rule marks as OWA only those subProgef axioms, where the
super-property is annotated bywlgred_s:isIinferred annotation assertion (**):
OWA(SubObijectPropertyOf(? ?X)) :-
isAsserted(AnnotationAssertion(?X owlgred_s:isief@rrrue)).

Semantics profile examples

Given the described language constructions for sémprofile, it is up to the user of
the ontology editor to define the semantic profik/she is willing to use for the
ontology splitting into OWA or CWA parts. We dissudere, however a few
semantics profiles that the users might find reabtanto use.

First, there is a simple “open-world” semantics fileo “OWA(?).” that will
interpret the entire ontology according to the ep@mld semantics. Another simple

semantics profile would be “OWA(Declaration(?)). @Y?).” that will interpret
everything except the declarations in the closeddwsensé

In what follows, we offer a semantics profile exdenfor use in information base
development on the basis of Stardog OWL/RDF datee stith OWL 2 RL reasoning
enabled. In our example we would like to follow theidelines of restricting the
OWA reasoner from (i) inferring the existence ofwiadividuals in the knowledge
base model, and (i) from inferring the co-incidenof two differently named
individuals, since we believe that specificationirdividuals and their co-incidence
are highly sensitive tasks that are to be handledually (it should, however, be
possible to specify explicBameAsaxioms}.

These principles would require exclusion of caaflip restrictions and
SomeValuesFrosrestrictions from OWA reasoner, and this corresisorio the
intuition of widely advocated interpretation of daralities as integrity constraints
(see e.g. [5]), and also used in UML semantics][F8rthermore, we would like to
retain an intuitive property of model determinisonfpleteness, what would be
violated, for instance, by OWA-interpretation of sjdinctive SubClassOf (in
superclass position) arglassAssertiomxioms. Within our example profile we shall
exclude also property domain and range axioms f@MA reasoning, although we
well admit that in some situations the reversesiegimight be more appropridte

On the other hand, assighing OWA sense&SuiClassOfaxioms with a named
class in the superclass position would be one@fibst important inferences that the
database should be able to maké We note that since we allow for different
interpretations of differenbubClassOaxioms, it would be necessary to refactor the
EquivalentClasseaxioms and process the resultfBgbClassOaxioms separately.

A situation with sub-property axioms (both for daad object properties) is
somewhat trickier, as it is easy to provide exasmpier both OWA and CWA
interpretations to be the most natural ones. Fstairce in Figure 4 we would like to
have the assertiopersonName<naméo be interpreted as OWA-assertion, while
works_on<manages as a constraint.

7 We do not bring the annotation axioms into theuwksion here since they do not affect the
ontology meaning. They can always reasonably bénputhe OWA-part of the ontology.

8 We stress that we consider here development dilplesontology splitter that we find
reasonable and that this is not to exclude anyr gteferences in splitter definition.

9 if ClassAssertion(ObjectUnionOf(B C),ahen among models of this axiom there will be
those where the object correspondin@ will belong either to the set correspondingBtor
C (the queries over the information base woulddists belonging t®_C, however, these
will not list a as belonging to eitheé® or C, since neither of these options can be inferred
from the knowledge base

10 Suppose there is a claBsrson with possibly overlapping subclassesidentand Teacher
Only studentsare allowed tdakeacourse It may well be possible that by an error we have
indicated thatProf.Smithtakesa courseProgramming Basicgit should have been that he
teacheshis coursg. The OWA semantics would “cope” with the situatiby inferring that
Prof.Smithis astudent whilst a more natural reaction from the systenuldde to raise an
error.

1 We recognize that it might be possible to interpren this kind of axioms as constraints, as
demonstrated e.g. in Stardog ICV documentation phtyjes/stardog.com/docs/sdp/.

12 There will be need to constrain also the clagsession in subclass position (e.g. to exclude
AllValuesFrom expressions) for SubClassOf-axiom interpretatn@®WA-sense.

In the case when the modeling methodology requireth OWA and CWA
interpretations of sub-property axioms, one migisort to a finer-grained structure of
axiom-level annotation, as described in Section 82 argue here, however, that
coarser-grained means may still be possible (apferable), namely introducing a
special annotation property, sayylgred_s:isIinferredand creating a conditional rule
in semantics profile definition that marks SubClassOf(A Baxiom as OWA
wheneverB is annotated by the introduced annotation §abObjectPropertyCthis
is rule (**) from the last subsectiofi) A convenient custom graphical notation for
isInferredannotations is easily introduced either in OWLGEdor OWLGrEd,
along the lines of the approach outlined in [17% (@enote the existence isfnferred
annotation for a property by a ‘/i/’ suffix addemithe data or object property hame).

An important OWA-axiom for information bases wolild alsolnverseProperties
We would refrain from includingFunctional and InverseFunctional property
characteristics, as well &ey-assertions in the ontology OWA-part since thesddto
be used to infer implicit co-incidences among @it TheReflexive Symmetricand
Transitive object property characteristics could be well ustb®dd as adding new
“ground knowledge” to the data model, thereforartipdace would rather be in the
ontology OWA-part (it may have limited, althoughtmompletely void, sense having
these property characteristics as constraints; iseusls some limitations later). Our
proposal would be to puisjointClassesand DisjointPropertiesaxioms, as well as
Irreflexive-andAsymmetricproperty assertions into ontology OWA-part, aslitel

Our observations regarding the OWA-part of the tmgp fall, in fact, in line with
OWL reasoning profile OWL RL [18] (we are willing include in ontology OWA-
part a subset of axioms allowed for OWL RL), exclptReflexiveObjectProperty
axiom that is excluded from the profile for efficy reasonis. As per example, we
exclude theReflexiveObjectPropersixiom from the OWA-part of the model, with
the understanding, however, that this may needetaeiconsidered as soon as a
serious use of this axiom in the information bageears.

Enabled refactorings (Fig. 5): i, ii, i, vi, ix, X, Xi, Xii, Xiv
Ontology splitting rules:
OWA(SubClassOf(?X ?Y)) :- isEntity(?X) or ?X-:-ObjectOneOf(?..) , isEntity(?Y) or ?Y-:-DataHasValue(?..) .
OWA(DisjointClasses(?X,?Y)) :- isEntity(?X) or ?X-:-ObjectOneOf(?..),isEntity(?Y) or ?Y-:-ObjectOneOf(?..).
OWA(SubObjectPropertyOf(? ?X)) :- isAsserted(AnnotationAssertion(?X owlgred_s:isInferred True)).
OWA(SubDataPropertyOf(? ?X)) :- isAsserted(AnnotationAssertion(?X owlgred_s:isInferred True)).
-- OWA(ReflexiveObjectProperty(?)). -- Excluded
OWA(InverseObjectProperties(? ?), SymmetricObjectProperty(?), TransitiveObjectProperty(?),
AsymmetricObjectProperty(?), IrreflexiveObjectProperty(?)).
OWA(ClassAssertion(?X ?)) :- isEntity(?X).
refactor (ClassAssertion(ObjectintersectionOf(?..) ?).
OWA(Samelndividuals(?..), Differentindividuals(?..), OWA(ObjectPropertyAssertion(? ? ?),
DataPropertyAssertion(? ? ?), DatatypeDefinition(? ?)).
CWA(?).
Fig.6. UML-style semantics profile

13 We note the parallels of the introdudsthferred notion for properties witisDerivedUnion

notion for UML association roles, although theséors cannot be semantically equated.
14 These would allow detecting certain inconsistenaieeady on the OWA-reasoning level.
15 http://lists.w3.org/Archives/Public/public-owl-w2308Sep/0212.html

The final principle in the “UML-style” semanticsqdile example (Figure 6) design
is adding the conditions ddubClassOandDisjointClassesaxioms, so as to conform
to a proper subset of OWL RL profile, and so avaidirect introduction of OWA-
assertions violating the design principles stateeh

We recall that the axioms that are present in titelogy editor and that are not
brought into its OWA-part, do not “disappear” —yhare put into the CWA-part and
interpreted as integrity constraints.

We have tested the example semantics profile withidRsoning mode of Stardog
and have found that it produces reasonable rediiksnote that there might be also
an approach of defining a semantics profile thagised on OWL QL [18].

A semantics profile conceptually is an integral tpaf OWLGrEd/S, since
changing the profile may seriously affect the ooggl semantics. Note, however, that
the semantic profiles are not necessarily to ko ue with OWLGrEd/S editor; these
can be used in the context of other ontology esliferg. Protégé), as well.

3.2 Graphical Interface for Axiom-level Ontology Spitting

The “meta-level” splitting procedures may appedffident for many uses of the
editor in a “disciplined” ontology/database schemahoring mode, however, for
visualization of an arbitrary extended ontologyireef granularity may be necessary;
therefore we offer extended graphical notation WIGSrEd/S editor allowing mar-
king up the extended ontology axioms as belonginthé¢ either OWA or CWA part.
Figure 7 contains an example of explicit markingagfoms as integrity constraints
within company ontology from Figure 4.

<<DataType>> Thina{owl} Funding_Bo =Department
date{XMLSchema}}| namefi/:string{(c) func} code:string{<() name} | receives_funds_from | or Project
number:int{func}

Government L
ST T

[Project
<number some integer
ks _on 0..(c):
Person wor [>0,<5000]
personName s ring{func{<(i) name} is_responsible_for {<works_on} (c)1.(c)
DOB:date{func}
sexstring{func} handles
B {<>has_dependent}|
\ 1.4
is_superior_of 2.4 =Project
>(c) is_superior_of o is_superior_of Ga‘g\t/je(r;en:zlr\:?s/&_qﬁ;:céi)_ﬂom some
(c) manages o inverse (works_in) <inverse works_on) only
_______Employee © (Employee
natonality:string manages and (nationalityvalue "american"))
ome
Department

<(c) numbersome integer manages {<works_in} 1

© 1 salarydecimal{func}
SSN s tring[1..4){func}
- T
has_dependent supervses 2.5 1 <<() disjoint>> | _
| (Q)f<>handles} {<is_superior_of} o i

Dependent 110 >(c) works_on o

<personN ame some string © inverse (handles)|

address:string{func}

relationshipstring{func} Manager |
|; <salarysome decimal[>150000.00 , < 300000.00] |

1
Supenvisor b1 Project_Leader
<salarysome decimal[>100000.00] <salarysome decimal[> 50000.00]

Fig.7. Company ontology, marked with axiom level CWA-sfiieations

The idea of the notation is to attach (i) (standirg‘inference”, meaning inclusion of
the axiom in OWA-part of the ontology) or (c) (s#img for “constraints”, meaning
inclusion of the axiom in CWA part of the ontologyptations to the visual
representations of OWL axioms. We note that theeia axiom markings are meant
to be used as an addition to the semantics prpfilescribed in Section 3.1. The
explicit marking of an axiom as (i)/(c) takes préeece over its processing
instructions, as defined in the semantics profe. note, however, that explicit (i)/(c)
marking is not possible on axiom “part” levels,italsave been possible in the case of
semantics profiles via axiom re-factoring. In theese, if an axiom is reflected in
several parts of the diagram, the (i)/(c) markirigany single place of the axiom
representation suffices to have the entire axionmkethas OWA/CWA, respectively.

The positions, where the (i)/(c)-markings can bwonfuced into OWLGrEd/S
editor are, as follows:

- object property line start and end positions, otitgy domain and range

assertions for the property (e.g. propdrag_dependerim Figure 7);

- data property name prefix, reflecting data propddynain assertion;

- equivalent classes, disjoint classes and supeedaassertions within class
nodes (e.g. assertishnumber some integeén Departmentlass); in a similar
way the notation is extended also to equivalergjodit and super-properties
(e.g.<(i)nameassertion fopersonNameroperty inPersonclass)

- property chain assertions

- object and data property characteristics (§(g)func} notation for name
property in clas3hing)

- cardinality restrictions (e.dqc)1..(c)3cardinality foris_responsible_fgr

- object property restrictions that are shown in apfical form (e.gEmployee
< manages some Departmgnt

- generalization lines JubClassOMmarkers) in the graphical form (e.g. for
subclasses ®ersonandEmployeeclasses)

- disjoint/complete assertions placed at generatinatet descriptors (forks),
e.g. the fork joining subclasseskérsonclass.

We note also the /i/-suffix notation for the namegerty at Thing class that is
used to annotatate the property witivigred_s:isInferreeannotation as a property
whose sub-property assertions on the semanticgepledel can be defined to belong
to the ontology OWA-part.

The conceptual tool chain for working with OWLGrBH/ editor involves
defining/importing the semantics profile, then &djtthe ontology in the editor,
possibly assigning the individual axiom markersrtiker on two ontologies, say,
open.owlandic.owl are exported from the editor and can be used&drd8t) database
environment as open schema and integrity constrdileis. There is an alternative
implementation, however, with independent ontolsglitter, where the ontology is
created in OWLGrEd or OWLGrEd/S (if extra markinfi@ custom annotation
properties, or individual axioms are required),ntlexported into an .owl file that is
enriched with custom annotations (the individuabax markers are implemented as
axiom-level annotations); the file is further oditspsing the created ontology splitter.

16 A current version of the editor can be found algoed.lumii.lv/s

The OWLGTrEd/S editor has also a principal pos$ibilo visualize any extended
ontology with integrity constraints due to its axidevel granularity of OWA/CWA
splitting; we are working towards implementationtbfs mechanism, as well, that
would allow involving the OWLGrEd/S editor also diag from later stages of
OWL/RDF database development in Stardog environment

4 Related Work

There are a number of approaches for visualizing) amhoring OWL ontologies
using graphics that is based on UML class diagratation. Most notable of the
existing approaches are [9], ODM [10] and TopBi@mmposer [11]. The distinction
of the OWLGTrEd ontology editor [12,13] from the aedies in the possibility to use
systematically OWL Manchester syntax [15] form tafss and property restrictions to
complement the graphic notation, thus obtainingoangact yet comprehensible
representation of OWL ontologies. To the best aflmowledge of the authors, none
of the abovementioned visual ontology editors offepport for integrity constraint
specification, as proposed here in OWLGrEd/S editor

The problem of notations and approaches for inegaénstraint incorporation in
existing OWL editors is well studied in [6], whetiee new vocabulary, ontology
annotation, axiom annotation and rich annotatiopgr@aches are considered (the
Stardog database implementation follows most cjoseé “ontology annotation”
approach). We observe that the idea of genericnasplitters that are defined as
meta-level procedures appears to be a new integoitgtraint specification way, if
compared to those described in [6].

5 Conclusions

The development of integrity constraints for RDF/D\Watabases may open wider
the way of the application of these database systemreal information base
modeling and implementation. The proposal of tlpgr to graphically visualize and
author RDF/OWL database schemas may ease subkyathitaschema development,
understanding and sharing for RDF/OWL databases, filrther removing obstacles
for spreading of the RDF/OWL database technology.

We believe that the seemingly obvious single-schetrservation that allows for
creation and maintaining of a joint visual model@VA and CWA assertions within
the ontology may be followed also by other ontolagltors as the way of integrity
constraint implementation.

The introduction of meta-level ontology splittingtation provides a base for
further discussions on natural semantics variaatsjdint OWA+CWA assertion
specification within a single ontology schema, adlw&s allowing the “power users”
of ontology editors to define their own semanticsfites fitting their specification
purposes (we recall that e.g. simple annotatioaréiess to entities may be exploited
in semantics profile definitions in order to defi@WA/CWA axiom splitting). The
axiom-level markup of integrity constraints in OWLE#/S can be used on top of

underlying semantics profile to achieve the findsgree needed in OWA/CWA
axiom splitting both in ontology schema visualipatiand authoring situations.

The creation of the OWLGrEd/S editor has been ptessdo to an open-
architecture, model-based and highly customizahl@ementation of the OWLGrEd
editor based on TDA platform [19] and the tool difon meta-model developed over
it [20]. The open and customizable tool architeethias been maintained also in
OWLGTrEd/S, allowing the expert users to tailor tygpearance and even to some
extent the functionality of the editor to the usespecific needs. As a possible future
work we consider including the support in OWLGrEddaOWLGrEd/S tools for
custom integrity constraints specificified e.gSRARQL language [21].

References

1. Smith, M. K.; Welty, C.; and McGuiness, D.: OWLe¥WOntology Language Guide, 2004

2. Motik, B; Patel-Schneider P.F; Parsia B.: OWL 2BbMentology Language Structural
Specification and Functional-Style Syntax, 2009

3. Motik, B.; Patel-Schneider, P. F.; and Grau, B.@NL 2 Web Ontology Language Direct
Semantics, 2009

4. Motik, B.; Horrocks, I.; and Sattler, U. Bridgirthpe Gap between OWL and Relational
Databases. In Proc. of WWW 2007, 807—-816, 2007.

5. Tao, J.; Sirin, E.; Bao J; McGuinness, D.: IntggConstraints in OWL. In Proc. of AAAI
2010, 2010.

6. Sirin, E; Smith, M; Vallace, E: Opening, Closikigorlds — On Integrity Constraints. In
Proc. of OWLED 2008, 2008.

7. Unified Modeling Language: Infrastructure, versi2.1. OMG Specification ptc/06-04-03,
http://www.omg.org/docs/ptc/06-04-03.pdf

8. Unified Modeling Language: Superstructure, \@r2.1. OMG Specification ptc/06-04-02,
http://www.omg.org/docs/ptc/06-04-02.pdf

9. Brockmans, S., Volz, R., Eberhart, A., Léffler,\Rsual Modeling of OWL DL Ontologies
Using UML, Proc. of ISWC 2004, LNCS 3298, pp. 198-22G04.

10.0DM UML profile for OWL, http://www.omg.org/sp&@DM/1.0/PDF/

11.TopBraid Composer, http://www.topquadrant.com/potsf TB_Composer.html.

12.Barzdins, J.; Barzdins, G.; Cerans, K.; Lieping,Jprogis, A.: OWLGrEd: a UML Style
Graphical Notation and Editor for OWL 2. In Pro€ @VLED 2010, 2010.

13. Barzdins, J.; Cerans, K.; Liepins, R.; SprogisUML Style Graphical Notation and Editor
for OWL 2. In Proc. of BIR'2010, LNBIP, Springer 20Myl. 64, p. 102-113, 2010.

14.Protégé 4, http://protege.stanford.edu/

15.0WL 2 Manchester Syntax, http://www.w3.org/TRIZamanchester-syntax/

16.Antoniou G., van Harmelen F. A Semantic Welmeri Second Edition, MIT Press, 2008.

17. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis, Advanced ontology visualization with
OWLGTEd. In Proc. of OWLED 2011, 2011.

18. Motik, B.; Grau, B. C.; Horrocks, I.; Wu, Z.; Fal@ A.; Lutz, C.: OWL 2 Web Ontology
Language Profiles, 2009

19. Barzdins J., Rencis E., and Kozlovics S. The Sfmmmation-Driven Architecture, Proc. of
8th OOPSLA Workshop on Domain-Specific Modeling sNaille, USA, pp.60-63, 2008.

20. Barzdins, J.; Cerans, K.; Kozlovics, S.; Laceliepins, R.; Rencis, E.; Sprogis, A; Zarins,
A.: An MDE-based Graphical Tool Building Framewohk.Scientific Papers, University of
Latvia, Vol 756, ISSN 1407-2157, pp. 121-138, 2010.

21. SPARQL Query Language for RDF, http://www.w3.0Rrdf-spargl-query/, 2008.

