

Advanced ontology visualization with OWLGrEd

Jānis Bārzdiņš, Kārlis Čerāns, Renārs Liepiņš, Artūrs Sproģis

Institute of Mathematics and Computer Science, University of Latvia,
Raina blvd. 29, LV-1459, Riga, Latvia

Janis.Barzdins@lumii.lv, Karlis.Cerans@lumii.lv,
Renars.Liepins@lumii.lv, Arturs.Sprogis@lumii.lv

Abstract. Intuitive ontology visualization is a key for their learning, exchange,
as well as their usage in conceptual modeling. OWLGrEd is a visual tool for
compact graphical UML-style rendering and editing of OWL 2.0 ontologies.
Here we introduce into OWLGrEd visualization annotations that allow defining
custom visual presentations of ontology entities on the basis of annotations
attached to these entities. The introduced mechanism of attaching visual
annotations to annotation properties used in the ontology, besides being
convenient for attaching graphical shape to user-defined annotations, appears to
be powerful enough to cover visualization of e.g. UML stereotypes and other
UML constructs that do not have direct counterpart in the "logic" part of OWL.

 Keywords: OWL ontologies, visualization, annotations, OWLGrEd.

1 Introduction

Intuitive ontology visualization is a key for their learning, exchange, as well as their
usage in conceptual modeling. There are a number of tools (e.g. [1,2,3,4]) for rende-
ring and/or editing OWL ontologies in a graphical form. ODM [1] and OWLGrEd [4]
are oriented on visualization of OWL ontologies in the style of UML [5] class
diagrams. The main idea of OWLGrEd has been to provide compact graphical
notation for OWL ontologies, by combining the graphical visualization facilities of
UML class diagrams with textual facilities of OWL Manchester encoding [6].

Although OWLGrEd can be successfully used for ontology presentation and
editing in a UML-style graphical form (cf. [7]), the practical task of ontology-based
modeling suggests further facilities that would be welcome in a graphical ontology
editor. The ontology designer may attach certain specific meaning to some ontology
entities by user-defined annotation properties and then may wish to create specific
visualization patterns for the introduced properties. For instance, if an annotation
assertion relates an OWL class to a database table expression, a database icon besides
the table expression field may be appropriate in rendering this annotation assertion.

There are also natural modeling constructs in UML that do not have direct
counterpart in OWL, such as stereotypes, composition relation and derived union of

properties (or “abstract” property A, not having other subject-object pairs than those
of union of B and C). The visual annotation framework that we introduce in this paper
allows both visual effect specification for user-defined annotations and visual
modeling of the mentioned “advanced” UML concepts (these concepts may be said to
correspond to “user-defined” annotations from OWL perspective, as well).

In what follows, after brief reviewing of basic OWLGrEd ontology modeling
facilities we proceed to the main point of outlining the visual annotation framework
and some its usage examples, including advanced UML construct modeling.

2 Basic OWLGrEd constructs

OWLGrEd provides graphical notation for OWL, based on UML class diagrams. We
show OWL classes as UML classes, data properties as class attributes, object
properties as associations, individuals as objects, etc. We enrich the UML class
diagrams with the following new extension notations (cf. [4, 8]):

• fields in classes for equivalent class, superclass and disjoint class expressions
written in Manchester OWL syntax [6];

• fields in associations and attributes for equivalent, disjoint and super properties
and fields for property characteristics, e.g., functional, transitive, etc.;

• anonymous classes containing equivalent class expression but no name;
• connectors for visualizing disjoint, equivalent, etc. axioms;
• boxes with connectors for n-ary disjoint, equivalent, etc. axioms;
• connectors for visualizing object property restrictions some, only, exactly, etc.

OWLGrEd provides option to specify class expressions in compact textual form
rather than using separate graphical element for each logical item within class
expression. If an expression is referenced in multiple places, it can optionally be
shown as an anonymous class. An anonymous class is also used as a base for property
domain/range specification, if this domain/range is not a class.

Plant

Thing {owl}

Tasty-plant

Lion

Carnivore
= Animal
 and (eats some Animal)

<<Label>>
"Panthera leo"

Animal
weight:integer

Giraffe
Label("giraffa
camelopardalis")

Herbivore
= Animal
 and (eats only
 (Plant
 or (is-part-of only Plant)))

Tree

Leaf

eaten-by

is-part-of
only

eaten-by some [1..*]

eats eaten-by-animal
{<eaten-by}

eats
only

eats only

eaten-by
some

[1..*]

<<disjoint>>

is-part-of
{tran}

Fig. 1. Example: OWLGrEd notation for a variation of African Wildlife ontology

Figure 1 depicts a variation of the popular African wildlife ontology [9] using
OWLGrEd notation. More detailed explanation of the notation used in the example
and its correspondence to OWL Manchester encoding is available in [4]. We note also
that OWLGrEd allows ontology interoperability with Protégé ontology editor [10].

3 Annotation Visualization Framework

The OWLGrEd’s annotation visualization framework allows mapping the built-in and
user-defined annotation properties onto editor’s visual styles and behavior patterns,
thus allowing customizable annotation assertion visualization.

An annotation assertion for an OWL entity (e.g. OWL class or OWL property) can
be visualized in OWLGrEd either textually within the visual representation object for
the entity (Inside mode, cf. Giraffe class label in Fig.1), or by a separate box con-
nected to the box/line with entity representation (Outside mode, cf. Lion class label).

In order to determine the visualization mode for an annotation property, say P, we
introduce a (visual) annotation property aShowMode in og namespace denoting
http://owlgred.lumii.lv/2011/visual/1.0/, and annotate P itself with this property, as in
AA(og:aShowMode :P og:modeInside)1. We introduce also annotation properties
og:aClassShowMode and og:aPropertyShowMode to describe visual modes for P-
assertion visualization for subjects that are OWL classes and properties respectively.

The advanced annotation visualization framework allows adding specific visual
style and behavior annotations to aShowMode-assertions (cf. Fig. 2) that are interpret-
ted by OWLGrEd. The style/behavior annotations in the case of Inside showing mode
may set the visual style of the annotation P field (og:displayStyle-annotation)2 and of
the diagram element (box or line) containing the annotation field (og:display-
ElemStyle). The style annotation value is a string with encoded values of style items
from visual style metamodel of [11]. It may define e.g. shape and color for a box;
dash length and start/end shape for a line; font name/style, placement and visibility
for a compartment (field); a box or field may also have a picture (icon) attached to it.

The type of showing annotation’s assertions may be set by og:prSheetType-
annotation. Its value og:Text (the default) denotes using text field for representing the
annotation value; og:Item denotes representing the annotation via placing its property
name (URI) in a designated single-valued compartment (only one og:Item-type
annotation can be shown visually for any subject).

The prefix/suffix for annotation assertion presentation in the diagram can be
specified by og:displayValuePrefix and og:displayValueSuffix annotations.
AA(A(og:prSheetType og:Item)
 A(og:displayElemStyle “bkgColor=’blue’”)
 og:aClassShowMode :ClassDB og:Inside)
AA(A(og:aDependency :ClassDB)
 A(og:displayStyle “picture=’db.jpg’”)
 og:aClassShowMode :DBExpr og:Inside)

Fig. 2. Visual annotation specification and application example
A(og:aDependency :Q) annotation of P’s aShowMode-assertion states that the speci-
fied P visualization effects apply only to subjects that are annotated also by Q, and
A(og:aDomainDependency :Q) states the dependence of P-assertion visualization
features from its subject’s domain annotation by Q. Fig. 2 shows OWL class Person,
with ClassDB and DBExpr annotations, before and after visual annotation application.

1 We let here and in the following examples A to stand for Annotation and AA for AnnotationAssertion
2 An inner-level og:compID-assertion may specify relation of visual properties to another compartment.

We note that A(og:prSheetType og:Item) annotations are sufficient to state that an
annotation property (e.g. ClassDB) behaves like UML stereotype; og:aDependency
provides visual framework for stereotype’s tagged values (e.g. a DBExpr-annotation
is visualized in a field with database icon only for ClassDB-annotated classes).

Fig. 3. Composition and property derived union in Mini-University example

Let for Mini-University ontology (Fig.3) there be assertions AA(user:isComposition
:includes “True”) and AA(user:isDerivedUnion :relates “True”) with user-defined
annotation properties isComposition and isDerivedUnion that are used for encoding
UML composition and property derived union constructs, not expressible in OWL.
The following visual annotations allow creating typical UML representations for
these constructs in OWLGrEd (cf. representation of :includes and :relates in Fig.3):
AA(A(og:displayElemStyle “line_start=’diamond’”) og:aShowMode user:isComposition og:Inside)
AA(A(A(og:compID “name”) og:displayValuePrefix “/”) A(og:displayStyle “visible=False”)
 og:aShowMode user:isDerivedUnion og:Inside)

Fig.3 shows also different notations for DBExpr-annotations to OWL properties.
These examples outline the power of OWLGrEd visual annotation framework. The

ability to attach visual annotations to annotation properties rather than individual
ontology entities allows using user-defined annotation properties as an abstract layer
for ontology visual presentation specification; this way domain-specific ontology
visualization languages can be created on the basis of OWL annotation construct.

References

1. ODM UML profile for OWL, http://www.omg.org/spec/ODM/1.0/PDF/
2. TopBraid Composer, http://www.topquadrant.com/products/TB_Composer.html
3. Brockmans, S., Volz, R., Eberhart, A., Löffler, P. Visual Modeling of OWL DL Ontologies

Using UML, Proc. of ISWC 2004, LNCS 3298, 2004, pp. 198-213.
4. J.Barzdins, G.Barzdins, K.Cerans, R.Liepins, A.Sprogis. OWLGrEd: a UML Style

Graphical Notation and Editor for OWL 2. // K.Clark and E.Sirin (eds.), OWLED 2010:
OWL: Experiences and Directions, 7th Intl. Workshop, San Francisco, CA, USA 2010.

5. Unified Modeling Language. http://www.omg.org/spec/UML/2.3/.
6. OWL 2 Manchester Syntax, http://www.w3.org/TR/owl2-manchester-syntax/
7. OWLGrEd, http://owlgred.lumii.lv/
8. J.Barzdins, G.Barzdins, K.Cerans, R.Liepins, A.Sprogis. UML Style Graphical Notation

and Editor for OWL 2. // Proc. of BIR’2010, LNBIP, Springer 2010, vol. 64, p. 102-113.
9. Antoniou G., van Harmelen F. A Semantic Web Primer, Second Edition, MIT Press, 2008.

10. Protégé, http://protege.stanford.edu/
11. J.Barzdins, K.Cerans, S.Kozlovics, E.Rencis, A.Zarins. A Graph Diagram Engine for the

Transformation-Driven Architecture, Proc. of 4th MDDAUI. Florida, USA, 2009, pp.29-32.

